Sains Malaysiana 51(11)(2022): 3785-3793
http://doi.org/10.17576/jsm-2022-5111-22
Peramalan Kualiti Udara menggunakan Kaedah Pembelajaran Mendalam Rangkaian Perlingkaran Temporal (TCN)
(Air Quality Forecasting using Temporal Convolutional Network (TCN) Deep
Learning Method)
MOHD
AFTAR ABU BAKAR*, NORATIQAH MOHD ARIFF, SAKHINAH ABU BAKAR, GOH PEI
CHI & RAMYAH RAJENDRAN
Jabatan Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Received:13 March 2022/Accepted:
4 July 2022
Abstrak
Kajian ini bertujuan untuk membina model kualiti udara untuk meramalkan kepekatan bahan pencemar udara di Malaysia. Kaedah peramalan yang dipilih dalam kajian ini adalah suatu teknik pembelajaran mendalam iaitu Rangkaian Perlingkaran Temporal
(TCN). Set data yang digunakan adalah siri masa zarahan terampai bersaiz diameter lebih kecil atau sama dengan 10 mikrometer (PM10) yang diperoleh daripada Jabatan Alam Sekitar Malaysia dari 5 Julai 2017 hingga 31 Januari 2019. Data daripada lima stesen pemantauan kualiti udara di Semenanjung Malaysia dipilih untuk kajian ini. Bagi tujuan perbandingan, kaedah rangkaian memori jangka pendek panjang (LSTM) juga digunakan dalam kajian ini yang mana ketepatan antara kedua-dua model dibandingkan. Secara amnya, nilai model ramalan daripada kedua-dua model adalah menghampiri data asal. Walau bagaimanapun, model yang dibina dengan kaedah TCN adalah lebih baik berbanding model LSTM dari segi ketepatan nilai ramalan. Kajian ini menunjukkan bahawa TCN merupakan teknik yang sesuai digunakan dalam peramalan data siri masa bagi kualiti udara di Semenanjung Malaysia.
Kata kunci: Kualiti udara; pembelajaran mendalam;
PM10; Rangkaian Perlingkaran Temporal (TCN)
Abstract
This study
aims to build an air quality model to predict pollutant concentrations in
Malaysia. The method chosen in this study is one of the deep learning
techniques which is the temporal convolution network (TCN). The data set used
is particulate matter with diameter of 10 micrometers or less
(PM₁₀) time series which is obtained from the Department of
Environment Malaysia from 5th July 2017 to 31st January
2019. Data from five air quality monitoring stations in Peninsular Malaysia
were selected for this study. The long-short term memory network (LSTM) is also
used in this study for the purpose of accuracy comparison between the two
models. Overall, the forecast values from both models are approximately close
to the original data. However, the TCN model is better in terms of the forecast
accuracy. This study shows that TCN is a suitable technique that can be used
for forecasting air quality time series data in Peninsular Malaysia.
Keywords: Air
quality; deep learning; PM10; Temporal Convolutional Network (TCN)
REFERENCES
Awang, M.B., Jaafar, A.B., Abdullah, A.M., Ismail, M.B.,
Hassan, M.N., Abdullah, R., Johan, S. & Noor, H. 2000. Air quality in
Malaysia: Impacts, management issues and future challenges. Respirology 5(2): 183-196.
Azid, A., Juahir, H., Ezani, E., Toriman, M.E., Endut, A., Rahman,
M.N.A., Yunus, K., Kamarudin,
M.K.A., Hasnam, C.N.C., Saudi, A.S.M. & Umar, R.
2015. Identification source of variation on regional impact of air quality
pattern using chemometric. Aerosol and Air Quality Research 15(4): 1545-1558.
Bakar,
M.A.A., Ariff, N.M., Nadzir,
M.S.M., Wen, O.L. & Suris, F.N.A. 2022.
Prediction of multivariate air quality time series data using long short-term
memory network. Malaysian Journal of
Fundamental and Applied Sciences 18: 52-59.
Carreras, M., Deriu, G., Raffo, L., Benini, L. & Meloni, P. 2020. Optimizing Temporal Convolutional Network
inference on FPGA-based accelerators. IEEE
Journal on Emerging and Selected Topics in Circuits and Systems 10(3): 348-361.
Chen, J., Chen, D. & Liu, G. 2020. Using temporal
convolution network for remaining useful lifetime prediction. Engineering
Reports 2020: e12305.
Chung, J., Gulcehre, C., Cho, K.
& Bengio, Y. 2014. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv: 1412.3555.
Dockery, D.W., Pope, C.A., Xu, X., Spengler, J.D., Ware,
J.H., Fay, M.E., Ferris Jr., B.G. & Speizer, F.E.
1993. An association between air pollution and mortality in six US
cities. New England Journal of Medicine 329(24): 1753-1759.
Elman, J.L. 1990. Finding structure in time. Cognitive
Science 14(2):
179-211.
Freeman, B.S., Taylor, G., Gharabaghi,
B. & Thé, J. 2018. Forecasting air quality time
series using deep learning. Journal of the Air & Waste Management
Association 68(8): 866-886.
Halim, N.D.A., Latif, M.T., Mohamed, A.F., Maulud, K.N.A., Idrus, S., Azhari, A., Othman, M. & Sofwan,
N.M. 2020. Spatial assessment of land use impact on air quality in mega urban
regions, Malaysia. Sustainable Cities and Society 63: 102436.
He, Y. & Zhao, J. 2019. Temporal convolutional networks
for anomaly detection in time series. Journal of Physics: Conference Series 1213(4):
042050.
Kim, H.Y. & Kim, D. 2020. Prediction of mutation effects
using a deep temporal convolutional network. Bioinformatics 36(7): 2047-2052.
Khairi, S.S.M., Bakar,
M.A.A., Alias, M.A., Bakar, S.A., Liong, C.Y., Rosli, N. & Farid, M. 2021. Deep learning on
histopathology images for breast cancer classification: A bibliometric
analysis. Healthcare 10(10): 1-22.
Lai, G., Chang, W.C., Yang, Y. & Liu, H. 2018. Modeling
long-and short-term temporal patterns with deep neural networks. In The
41st International ACM SIGIR
Conference on Research & Development in Information Retrieval. pp.
95-104.
Latif, M.T., Othman, M., Idris, N., Juneng,
L., Abdullah, A.M., Hamzah, W.P., Khan, M.F., Sulaiman,
N.M.N., Jewaratnam, J., Aghamohammadi,
N. & Sahani, M. 2018. Impact of regional haze
towards air quality in Malaysia: A review. Atmospheric Environment 177:
28-44.
Li, B. & Sim, K.C. 2014. A spectral masking approach to
noise-robust speech recognition using deep neural networks. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 22(8): 1296-1305.
Nadzir, M.S.M., Nor, M.Z.M., Nor, M.F.F.M., Wahab, M.I.A.,
Ali, S.H.M., Otuyo, M.K., Bakar, M.A.A., Saw, L.H.,
Majumdar, S., Ooi, M.C.G., Mohamed, F., Hisham, B.A.,
Hamid, H.H.A., Khaslan, Z., Ariff,
N.M., Anuar, J., Tok, G.R., Ya’akop,
N.A. & Meswn, M.M. 2021. Risk assessment and air
quality study during different phases of COVID-19 lockdown in an urban area of Klang Valley, Malaysia. Sustainability 13: 12217.
Nadzir, M.S.M., Ooi, M.C.G., Alhasa, K.M., Bakar, M.A.A., Mohtar,
A.A.A., Nor, M.F.F.M., Latif, M.T., Hamid, H.H.A., Ali, S.H.M., Ariff, N.M., Anuar, J., Ahmad,
F., Azhari, A., Hanif, N.M., Subhi,
M.A., Othman, M. & Nor, M.Z.M. 2020. The impact of Movement Control Order
(MCO) during pandemic COVID-19 on local air quality in an urban area of Klang Valley, Malaysia. Aerosol
and Air Quality Research 20: 1237-1248.
Purwins, H.,
Li, B., Virtanen, T., Schlüter, J., Chang, S.Y. & Sainath, T. 2019. Deep
learning for audio signal processing. IEEE Journal of Selected Topics
in Signal Processing 13(2):
206-219.
Sethi, J.K. &
Mittal, M. 2020. Analysis of air quality using univariate and multivariate time
series models. In 2020 10th International Conference on Cloud
Computing, Data Science & Engineering (Confluence) IEEE. pp. 823-827.
Sun, J., Luo, X., Gao, H., Wang, W., Gao, Y. & Yang, X.
2020. Categorizing malware via a word2vec-based temporal convolutional network
scheme. Journal of Cloud Computing 9(1): 1-14.
Suris, F.N.A., Bakar,
M.A.A., Ariff, N.M., Mohd Nadzir, M.S. & Ibrahim, K. 2022. Malaysia PM10 air quality time series clustering based on dynamic time warping. Atmosphere 13: 503.
Yan, J., Mu, L., Wang, L., Ranjan, R. & Zomaya, A.Y. 2020. Temporal convolutional networks for the advance prediction of
ENSO. Scientific Reports 10(1): 1-15.
Zhao,
J., Deng, F., Cai, Y. & Chen, J. 2019. Long short-term memory - Fully
connected (LSTM-FC) neural network for PM2.5 concentration prediction. Chemosphere 220: 486-492.
*Corresponding author; email: aftar@ukm.edu.my
|