Sains Malaysiana 51(11)(2022): 3795-3806
http://doi.org/10.17576/jsm-2022-5111-23
Spatial Quantile Autoregressive Model: Case Study of
Income Inequality in Indonesia
(Model Autoregresif Kuantil Reruang: Suatu Kajian Kes Ketaksamaan Pendapatan di
Indonesia)
EVELLIN DEWI LUSIANA1,2*, HENNY PRAMOEDYO3 & BARIANTO NURASRI SUDARMAWAN4
1Department of Aquatic
Resource Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang,
65145, Indonesia
2Department
of Mathematics, Faculty of Mathematics and Natural Science, Universitas Brawijaya Malang, 65145, Indonesia
3Department of Statistics, Faculty of Mathematics and
Natural Sciences, Universitas Brawijaya,
Malang, 65145, Indonesia
4Faculty of Economics, Universitas Islam Negeri
Maulana Malik Ibrahim, Malang, 65145, Indonesia
Received: 4
December 2021/Accepted: 19 July 2022
Abstract
Substantial
economic development in Indonesia has dramatically increased inequality in the
last decade. This issue will hinder the country’s long-term economic
development as well as creating socioeconomic instability and violence. This
study analysed the effects of macroeconomic factors such as gross regional
domestic product, investment, unemployment rate, and labour-force
participation, on Indonesian provinces’ inequality. Since the economic
development in Indonesia is mostly concentrated on Java Island, a spatial based
analysis was appropriate. In addition, we also considered a method that enabled
a specific level of inequality modelling, since previous studies used a
mean-based analysis. Therefore, we proposed a spatial quantile autoregressive
(SQAR) technique. The results showed that the Gini index of Indonesian
provinces had a significant positive spatial autocorrelation (SA). Regions with
similar Gini index values tended to
cluster together. In addition, local analysis of the SA showed Java Island as a
region that was characterized by high inequality, while Sumatra and Kalimantan
Island were not. By contrast, the SQAR model suggested that there were various
effects of macroeconomic factors on inequality at different levels of quantile.
As a consequence, distinct approaches to handling inequality should be taken
for provinces with low, medium, and high Gini index values.
Keywords: Gini index; Moran’s I; quantile regression; spatial connectivity
Abstrak
Pembangunan ekonomi yang besar di Indonesia telah meningkatkan ketidaksamaan secara mendadak dalam dekad yang lalu. Isu ini akan menghalang pembangunan ekonomi jangka panjang negara serta mewujudkan ketidakstabilan sosioekonomi dan keganasan. Kajian ini menganalisis kesan faktor makroekonomi seperti keluaran dalam negara serantau kasar, pelaburan, kadar pengangguran dan penyertaan tenaga buruh terhadap ketidaksamaan wilayah Indonesia. Memandangkan pembangunan ekonomi di Indonesia kebanyakannya tertumpu di Pulau Jawa, analisis berasaskan reruang adalah sesuai. Di samping itu, kami juga mempertimbangkan kaedah yang membolehkan pemodelan ketaksamaan tahap tertentu, memandangkan kajian terdahulu menggunakan analisis berasaskan min. Oleh itu, kami mencadangkan teknik autoregresif kuantil reruang (SQAR). Keputusan menunjukkan bahawa indeks Gini Wilayah
Indonesia mempunyai autokorelasi reruang (SA) positif yang signifikan. Kawasan yang mempunyai nilai indeks Gini yang serupa cenderung berkumpul bersama. Di samping itu, analisis tempatan SA mendedahkan Pulau Jawa sebagai wilayah yang dicirikan oleh ketidaksamaan yang tinggi, manakala Pulau Sumatera dan
Kalimantan tidak. Sebaliknya,
model SQAR mencadangkan bahawa terdapat pelbagai kesan faktor makroekonomi terhadap ketidaksamaan pada tahap kuantil yang berbeza. Akibatnya, pendekatan berbeza untuk mengendalikan ketidaksamaan harus diambil untuk wilayah yang mempunyai nilai indeks Gini rendah, sederhana dan tinggi.
Kata kunci: Indeks Gini; Moran's I; perhubungan reruang; regresi kuantil
REFERENCES
Adrian, A. 2019. Empowerment strategies of micro, small,
medium enterprises (MSMEs) To improve Indonesia export performance. International
Journal of Economics, Business and Accounting Research (IJEBAR) 2(04):
50-60. DOI: 10.29040/ijebar.v2i04.222
Akita, T., Kurniawan, P.A. & Miyata, S. 2011. Structural
changes and regional income inequality in Indonesia: A bidimensional
decomposition analysis. Asian Economic Journal 25(1): 55-77. DOI:
10.1111/j.1467-8381.2011.02053.x
Alesina, A. & Rodrik, D. 1994.
Distributive politics and economic growth. The Quarterly Journal of
Economics 109(2): 465-490. DOI: 10.2307/2118470
Angrist, J., Chernozhukov, V.
& Fernández-Val, I. 2006. Quantile regression under misspecification, with
an application to the U.S. wage structure. Econometrica 74(2): 539-563.
Anselin, L. 1995. Local Indicators of
Spatial Association - LISA. Geographical Analysis. 27(2): 93-115. DOI:
https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Anselin, L. 1988. Spatial Econometrics:
Methods and Models. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Bakar, A.A., Hamdan, R. & Sani, N.S. 2020. Ensemble
learning for multidimensional poverty classification. Sains Malaysiana 49(2): 447-459. DOI:
10.17576/jsm-2020-4902-24
Balisacan, A.M., Pernia,
E.M. & Asra, A. 2003. Revisiting Growth and
Poverty Reduction in Indonesia: What do Subnational Data Show? DOI:
10.1080/0007491032000142782
Bénabou, R. 1996. Inequality and Growth.
V. 11. MIT Press. DOI: 10.1086/654291.
BKPM. 2021. Realisasi Investasi di Indonesia Sepanjang Tahun 2020. https://www.bkpm.go.id/id/publikasi/siaran-pers/readmore/2413001/68601. Accessed on 2 June 2021.
Buchinsky, M. 1994. Changes in U.S. wage
structure 1963-1987: Applications of quantile regression. Econometrica 62: 405-458.
Chernozhukov, V. & Hansen, C. 2006. Instrumental
quantile regression inference for structural and treatment effect models. Journal
of Econometrics 132(2): 491-525. DOI:
https://doi.org/10.1016/j.jeconom.2005.02.009
Chunying, Z. 2011. A quantile regression
analysis on the relations between foreign direct investment and technological
innovation in China. In 2011 International Conference of Information
Technology, Computer Engineering and Management Sciences. Volume 4. pp.
38-41. DOI: 10.1109/ICM.2011.233
Cliff, A.C. & Ord, J.K. 1973. Spatial Autocorrelation.
London: Pion Limited.
Constantine, C. 2017. Economic structures, institutions and
economic performance. Journal of Economic Structures 6(1): 2. DOI:
10.1186/s40008-017-0063-1
Dabla-Norris, E., Kochhar, K., Suphaphiphat,
N., Ricka, F. & Tsounta,
E. 2015. Causes and Consequences of Income Inequality: A Global Perspective.
DOI: 10.5089/9781513555188.006
Dorodjatoen, A.M.H. 2019. DOI:
10.26182/5cca430b16437
Dudani, S.A. 1976. The distance-weighted
k-nearest-neighbor rule. IEEE Transactions on Systems, Man, and Cybernetics.
SMC-6(4): 325-327. DOI: 10.1109/TSMC.1976.5408784.
Fitzenberger, B. 1997. Computational aspects of
censored quantile regression. In 3rd International Data Analysis based on L-
1-Statistical Procedures and Related Methods. V. 31. Hayword,
California: IMS Lecture Notes Series. pp. 171-186.
Galiani, S. & Titiunik,
R. 2005. Changes in the Panamanian wage structure: A quantile regression
analysis. Económica L1(1-2): 3-27.
Gardeazabal, J. & Ugidos,
A. 2005. Gender wage discrimination at quantiles. Journal of Population
Economics 18(1): 165-179.
Girma, S. & Görg, H. 2003. Foreign
direct investment, spillovers and absorptive capacity: Evidence from quantile
regressions. IIIS Discussion Paper No. 1; GEP Working Paper No. 2002/14. DOI:
10.2139/ssrn.410742.
Hijrawadi, S.N. & Adrian. 2019. Migration
pattern of industrial workers in Bekasi Regency. Jurnal SPATIAL Wahana Komunikasi dan Informasi Geografi 19(1): 25-31. DOI: 10.21009/spatial.191.04
Kaya, E. 2017. Quantile Regression and the Gender Wage
Gap: Is There a Glass Ceiling in the Turkish Labor Market? Cardiff Economic
Working Papers E2017/5, Cardiff University, Cardiff Business School, Economics
Section.
Keefer, P. & Knack, S. 2002. Polarization, politics and
property rights: Links between inequality and growth. Public Choice 111(1): 127-154. DOI: 10.1023/A:1015168000336
Khoirunurrofik, K. 2017. Trends and determinants
of the geographical distribution of economic activities: Evidence from
Indonesian manufacturing. Journal of Indonesian Applied Economics 7(1):
18-47. DOI: 10.21776/ub.jiae.2017.007.01.2
Kim, T.H. & Muller, C. 2004. Two-stage quantile
regression when the first stage is based on quantile regression. The Econometrics
Journal 7(1): 218-231.
Koenker, R. & Hallock, K. 2001.
Quantile regressions. Journal of Economic Perspectives 15: 143-156.
Lee, L.F. 2002. Consistency and efficiency of least squares
estimation for mixed regressive, spatial autoregressive models. Econometric
Theory 18: 252-277.
Lesage, J.P. 1997. Bayesian estimation of spatial
autoregressive models. International Regional Science Review 20(1-2):
113-129. DOI: 10.1177/016001769702000107
Liu, X. & Saraiva, P. 2015. GMM estimation of SAR models
with endogenous regressors. Regional Science and Urban Economics 55:
68-79. DOI: https://doi.org/10.1016/j.regsciurbeco.2015.09.002
Majid, M.H.A. & Ibrahim, K. 2021. Composite pareto
distributions for modelling household income distribution in Malaysia. Sains Malaysiana 50(7): 2047-2058. DOI: 10.17576/jsm-2021-5007-19
Malikov, E., Sun, Y. & Hite, D. 2019.
(Under)Mining local residential property values: A semiparametric spatial
quantile autoregression. Journal of Applied Econometrics 34(1): 82-109.
DOI: https://doi.org/10.1002/jae.2655
Naim, M., Rasidi, M., Sahani, M., Ali, M., Choy, E.A., Hafiz, M. & Abstrak, R. 2013. Application
of geographical information system for spatial-temporal mapping: A case study
of dengue cases in Seremban, Negeri Sembilan, Malaysia. Sains Malaysiana 42(8): 1073-1080.
Nazara, S. 2010. Pemerataan antardaerah sebagai tantangan utama transformasi struktural pembangunan ekonomi Indonesia
masa depan. Jurnal Ekonomi dan Pembangunan Indonesia 11(1): 83-98.
DOI: 10.21002/jepi.v11i1.183
Nugraha, A. & Prayitno,
G. 2020. Regional disparity in western and eastern Indonesia. International
Journal of Economics and Business Administration VIII(Issue
4): 101-110. DOI: 10.35808/ijeba/572
Rodriguez, N. & Chowdhury, A. 2013. Are there policy
lessons from the so-called Southeast Asian Model? ASEAN Journal of
Economics, Management and Accounting 1(June): 1-12.
SAAPE. 2019. Growing Inequality in South Asia South Asia
Inequality Report 2019.
Santoso, Y.I. 2021. Ekonomi 2020 Masih Terpusat di Pulau Jawa, Ini Kata Ekonom CORE. https://nasional.kontan.co.id/news/ekonomi-2020-masih-terpusat-di-pulau-jawa-ini-kata-ekonom-core. Accessed on 2 June 2021.
Skoufias, E. 2001. Changes in the regional
inequality and social welfare in Indonesia from 1996 to 1999. Journal of
International Development 13(1): 73-91. DOI: 10.1002/jid.750
Sukwika, T. 2018. Peran pembangunan infrastruktur terhadap ketimpangan ekonomi antarwilayah di
Indonesia. Jurnal Wilayah dan Lingkungan 6(2): 115. DOI: 10.14710/jwl.6.2.115-130
Sulistiyono, S.T. & Rochwulaningsih,
Y. 2013. Contest for hegemony: The dynamics of inland and maritime cultures
relations in the history of Java Island, Indonesia. Journal of Marine and
Island Cultures 2(2): 115-127. DOI:
https://doi.org/10.1016/j.imic.2013.10.002
Suryahadi, A., Yumna,
A., Raya, U.R. & Marbun, D. 2010. Review of
Government’s Poverty Reduction Strategies, Policies, and Programs in Indonesia.
https://smeru.or.id/en/publication/review-government%E2%80%99s-poverty-reduction-strategies-policies-and-programs-indonesia
Tansel, A., Keskin,
H.I. & Ozdemir, Z.A. 2020. Public-private sector
wage gap by gender in Egypt: Evidence from quantile regression on panel data,
1998-2018. World Development 135: 105060. DOI: 10.1016/j.worlddev.2020.1
Trzpiot, G. & Orwat-Acedanska,
A. 2016. Spatial quantile regression in analysis of healthy life years in the
European Union countries. Comparative Economic Research 19(5). DOI: 10.1515/cer-2016-0044
Upton, G.J.G. & Fingleton, B.
1985. Spatial Data Analysis by Example. New York: Wiley.
Wei, Y.D. 2015. Spatiality of regional inequality. Applied
Geography 61: 1-10. https://doi.org/10.1016/j.apgeog.2015.03.013
Wicaksono, E., Amir, H. & Nugroho, A. 2017. The Source of Income Inequality in
Indonesia: A Regression-Based Inequality Decomposition.
https://www.adb.org/publications/sources-income-inequality-indonesia
Williamson, J.G. 1965. Regional inequality and the process
of national development, development and cultural change. Journal of
Chemical Information and Modeling 13(4): 1-84.
Zhang, J., Lu, Q., Guan, L. & Wang, X. 2021. Analysis of
factors influencing energy efficiency based on spatial quantile autoregression:
Evidence from the panel data in China. Energies 14(2): 504. DOI:
10.3390/en14020504
Zhuang, J., Kanbur, R. & Rhee,
C. 2014. Rising Inequality in Asia and Policy Implications. DOI:
10.2139/ssrn.2399298
*Corresponding
author; email: evellinlusiana@ub.ac.id
|