Sains Malaysiana 51(11)(2022): 3807-3817
http://doi.org/10.17576/jsm-2022-5111-24
On the
Impact of Asymmetric Dependence in the Actuarial Pricing of Joint Life
Insurance Policies
(Kesan Kebersandaran Asimetri dalam Harga Aktuari Polisi
Insurans Hayat Tercantum)
EMEL KIZILOK KARA*
Department of Actuarial Sciences, Faculty of Arts and
Sciences, Kirikkale University,
Kirikkale, Turkey
Received:
1 April 2022/Accepted: 19 July 2022
Abstract
Multipopulation mortality modeling is a significant research
problem in actuarial science. Mortality functions involving multiple lives are
also essential to determine the pricing of premiums. Moreover, the lifetime
models based on dependence and asymmetry are more realistic. Hence, this paper
applies an asymmetric copula model, Generalized FGM (GFGM) to model the
bivariate joint distribution of future lifetimes. Premiums of first-death life
insurance products are calculated based on the proposed model and compared with
independent and symmetrical models. The results display that asymmetry has a
significant effect on premium calculations. Also, it is concluded that the
lowest premiums are generally in asymmetric lifetime models. This paper also
provides analytical examples for the proposed model with Gompertz’s marginal
law.
Keywords: Asymmetric dependence; copula; insurance; joint life (first-death); premium
Abstrak
Pemodelan mortaliti populasi berbilang merupakan permasalahan
penyelidikan yang penting dalam bidang sains aktuari. Fungsi mortaliti yang
melibatkan model hayat berbilang juga berperanan untuk menentukan harga
premium. Selain itu, model masa-hayat berdasarkan kebersandaran dan asimetri
adalah lebih realistik. Oleh itu, makalah ini menggunakan model kopula asimetri
dan Generalized FGM (GFGM) untuk memodelkan taburan tercantum bivariat
bagi jangka hayat masa hadapan. Premium bagi produk insurans hayat kematian-pertama
dihitung berdasarkan model yang dicadangkan dan dibandingkan dengan model tak
bersandar dan simetri. Keputusan menunjukkan bahawa asimetri mempunyai kesan
yang signifikan ke atas pengiraan premium. Selain itu, dapat disimpulkan bahawa
premium terendah kebiasaannya ditunjukkan dalam model masa hayat asimetri.
Kajian ini juga menyediakan contoh analisis bagi model yang dicadangkan
menggunakan marginal Gompertz.
Kata kunci: Hayat tercantum (kematian-pertama); insurans; kebersandaran asimetri; kopula;
premium
REFERENCES
Ang, A., Chen J. &
Xing, Y. 2006. Downside risk. Review of Financial Studies 19: 1191-1239.
Bairamov, I. & Kotz,
S. 2002. Dependence structure and symmetry of Huang–Kotz FGM distributions and
their extensions. Metrika 56: 55-72.
Bairamov, I., Kotz, S.
& Bekci, M. 2001. New generalized Farile-Gumbel-Morgenstern distributions
and concomitants of order statistics. Journal of Applied Statistics 28(5): 521-536.
Bowers, N.L., Gerber,
H.U., Hickman, J.C., Jones, D.A. & Nesbitt, C.J. 1997. Actuarial
Mathematics. New York: The Society of Actuaries.
Bücher, A., Irresberger,
F. & Weiss, G.N. 2017. Testing asymmetry in dependence with
copula-coskewness. North American Actuarial Journal 21(2): 267-280.
Carriere, J.F. 2000.
Bivariate survival models for coupled lives. Scandinavian Actuarial Journal 2000(1): 17-32.
Denuit, M. & Cornet,
A. 1999. Multilife premium calculation with dependent future lifetimes. Journal
of Actuarial Practice 7: 147-180.
Dickson, D.C., Hardy, M.,
Hardy, M.R & Waters, H.R. 2013. Actuarial Mathematics for Life
Contingent Risks. Cambridge: Cambridge University Press.
Dufresne, F., Hashorva,
E., Ratovomirija, G. & Toukourou, Y. 2018. On age difference in joint
lifetime modelling with life insurance annuity applications. Annals of
Actuarial Science 12(2): 350-371.
Frees, E.W., Carriere, J.
& Valdez, E. 1996. Annuity valuation with dependent mortality. Journal
of Risk and Insurance 63(2): 229-261.
Gerber, H.U. 1997. Life
Insurance Mathematics. Springer, Science & Business Media.
Güven, B. & Kotz, S.
2008. Test of independence for generalized Farlie–Gumbel–Morgenstern
distributions. Journal of Computational and Applied Mathematics 212(1):
102-111.
Harvey, C. &
Siddique, A. 2000. Conditional skewness in asset pricing tests. Journal of
Finance 55: 1263-1295.
Hsieh, M.H., Tsai, C.J.
& Wang, J.L. 2020. Mortality risk management under the factor Copula
framework-with applications to insurance policy pools. North American
Actuarial Journal 25(Issue sup1: Longevity Risk and Capital Markets -
Longevity 12 and Longevity 13): S119-S131.
Huang, J.S. & Kotz,
S. 1999. Modifications of the Farlie–Gumbel–Morgenstern distributions. A tough
hill to climb. Metrika 49: 135-145.
Jagger, C. & Sutton,
C.J. 1991. Death after marital bereavement is the risk increased? Statistics
in Medicine 10(3): 395-404.
Jung, Y.S., Kim, J.M.
& Kim, J. 2008. New approach of directional dependence in exchange markets
using generalized fgm copula function. Communications in
Statistics-Simulation and Computation 37(4): 772-788.
Kara, E.K. 2021. Chapter
III. On actuarial premiums for joint last survivor life insurance based on
asymmetric dependent lifetimes. In Current Academic Studies in Science and
Mathematics Sciences-II, edited by Yildiz, D.E. & Özkan, E.Y. Lyon,
France: Livre de Lyon. pp. 33-47.
Lee, I., Lee, H. &
Kim, H.T. 2014. Analysis of reserves in multiple life insurance using copula. Communications
for Statistical Applications and Methods 21(1): 23-43.
Lu, Y. 2017. Broken-heart,
common life, heterogeneity: Analyzing the spousal mortality dependence. ASTIN
Bulletin: The Journal of the IAA 47(3): 837-874.
Luciano, E., Spreeuw, J.
& Vigna, E. 2008. Modelling stochastic mortality for dependent lives. Insurance:
Mathematics and Economics 43(2): 234-244.
Menge, W.O. & Glover,
J.W. 1938. An Introduction to the Mathematics of Life Insurance.
Macmillan.
Nelsen, R.B. 2007. An
Introduction to Copulas. Springer, Science & Business Media.
Rodriguez-Lallena, J.A.
& Úbeda-Flores, M. 2004. A new class of bivariate copulas. Statistics
& Probability Letters 66(3): 315-325.
Shemyakin, A.E. &
Youn, H. 2006. Copula models of joint last survivor analysis. Applied
Stochastic Models in Business and Industry 22(2): 211-224.
Shubina, M. & Lee,
M.L.T. 2004. On maximum attainable correlation and other measures of dependence
for the Sarmanov family of bivariate distributions. Communications in
Statistics-Theory and Methods 33(5): 1031-1052.
Sklar, M. 1959. Fonctions
De Repartition an Dimensions Et Leurs Marges. Publ. Inst. Statist. Univ,
Paris. 8: 229-231.
Uhm, D., Kim, J.M. &
Jung, Y.S. 2012. Large asymmetry and directional dependence by using copula
modeling to currency exchange rates. Model Assisted Statistics and
Applications 7(4): 327-340.
Zhu, W., Tan, K.S. &
Wang, C.W. 2017. Modeling multicountry longevity risk with mortality
dependence: A Lévy subordinated hierarchical Archimedean copulas approach. Journal
of Risk and Insurance 84(S1): 477-493.
*Corresponding author;
email: emel.kizilok@kku.edu.tr
|