Sains Malaysiana 44(12)(2015): 1721–1728
An Interactively Recurrent Functional Neural Fuzzy Network with Fuzzy
Differential Evolution and Its Applications
(Rangkaian
Neuron Kabur Berfungsi Interaktif Berulang dengan Evolusi Pengkamiran
Kabur dan Penggunaannya)
CHENG-JIAN LIN*1, CHIH-FENG WU2, HSUEH-YI LIN1 & CHENG-YI YU1
1Department of Computer
Science and Information Engineering, National Chin-Yi University of Technology,
Taichung City 411, Taiwan, R.O.C.
2Department of Digital
Content Application and Management, Wenzao Ursuline University of Languages, Kaohsiung
City 807, Taiwan, R.O.C.
Diserahkan: 22 Ogos
2014/Diterima: 23 Jun 2015
ABSTRACT
In this paper, an interactively
recurrent functional neural fuzzy network (IRFNFN)
with fuzzy differential evolution (FDE) learning method was
proposed for solving the control and the prediction problems. The traditional
differential evolution (DE) method easily gets trapped in a
local optimum during the learning process, but the proposed fuzzy differential
evolution algorithm can overcome this shortcoming. Through the information
sharing of nodes in the interactive layer, the proposed IRFNFN can
effectively reduce the number of required rule nodes and improve the overall
performance of the network. Finally, the IRFNFN model and associated FDE learning
algorithm were applied to the control system of the water bath temperature and
the forecast of the sunspot number. The experimental results demonstrate the
effectiveness of the proposed method.
Keywords: Control; differential
evolution; neural fuzzy network; prediction; recurrent network
ABSTRAK
Dalam kajian ini, rangkaian neuron
kabur berfungsi interaktif berulang (IRFNFN) dengan kaedah pembelajaran
evolusi pengkamiran kabur (FDE) dicadangkan untuk menyelesaikan
masalah kawalan dan ramalan. Kaedah tradisi evolusi pengkamiran
(DE)
akan terperangkap dengan mudah di dalam optimum tempatan semasa
proses pembelajaran, tetapi evolusi pengkamiran kabur algoritma
yang dicadangkan boleh mengatasi kelemahan ini. Melalui perkongsian
maklumat nod dalam lapisan interaktif, IRFNFN yang dicadangkan boleh mengurangkan bilangan nod
peraturan yang diperlukan dengan berkesan dan meningkatkan prestasi
keseluruhan rangkaian. Akhir sekali, gabungan model IRFNFN dan pembelajaran algoritma
FDE digunakan untuk sistem kawalan suhu rendaman air dan
ramalan nombor tompok matahari. Keputusan eksperimen menunjukkan
keberkesanan kaedah yang dicadangkan.
Kata kunci: Evolusi pengkamiran; kawalan; ramalan; rangkaian berulang;
rangkaian neuron kabur
RUJUKAN
Ali, M.M., Khompatraporn, C.
& Zabinsky, Z.B. 2005. A numerical evaluation of several stochastic
algorithms on selected continuous global optimization test problems. Journal
of Global Optimization 31(4): 635-672.
Chen, C.S. 2010. TSK-type
self-organizing recurrent-neural-fuzzy control of linear microstepping motor
drives. IEEE Transactions on Power Electronics 25(9): 2253-2265.
Chen, C.H., Su, M.T., Lin, C.J.
& Lin, C.T. 2014. A hybrid of bacterial foraging optimization and particle
swarm optimization for evolutionary neural fuzzy classifier design. International
Journal of Fuzzy Systems 16(3): 422-433.
Chen, C.H., Lin, C.J. & Lin,
C.T. 2009. Nonlinear system control using adaptive neural fuzzy networks based
on a modified differential evolution. IEEE Trans. On Systems, Man, and
cybernetics-Part C: Applications and Reviews 39(4): 459- 473.
Chen, Y.C. & Teng, C.C. 1995.
A model reference control structure using a fuzzy neural network. Fuzzy Sets
and Systems 73: 291-312.
Gong, W., Cai, Z.C., Ling, X.
& Li, H. 2011. Enhanced differential evolution with adaptive strategies for
numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 41(2): 397-413.
Huang, V.L., Qin, A.K. &
Suganthan, P.N. 2006. Self-adaptive differential evolution algorithm for
constrained real-parameter optimization. IEEE Congress on Evolutionary
Computation pp. 215-222.
Juang, C.F. 2002. A TSK-type
recurrent fuzzy network for dynamic systems processing by neural network and
genetic algorithms. IEEE Trans. on Fuzzy Systems 10(2): 155-170.
Juang, C.F. & Hsieh, C.D.
2010. A locally recurrent fuzzy neural network with support vector regression
for dynamic-system modeling. IEEE Transactions on Fuzzy Systems 18(2): 261-273.
Lee, C.H. & Teng, C.C. 2000.
Identification and control of dynamic systems using recurrent fuzzy neural
networks. IEEE Trans. on Fuzzy Systems 8(4): 349-366.
Li, J., Cheng, J.H., Shi, J.Y.
& Huang, F. 2012. Brief introduction of back propagation (BP) neural
network algorithm and its improvement. In Advances in Computer Science and
Information Engineering. Berlin, Heidelberg: Springer. pp. 553-558.
Lin, C.J. 2004. A GA-based neural
fuzzy system for temperature control. Fuzzy Sets and Systems 143(2):
311-333.
Lin, C.J., Lin, Y.M. & Lee,
C.Y. 2010. Nonlinear system control using a recurrent neural fuzzy network
based on reinforcement particle swarm optimization. The 3rd International
Symposium on Computational Intelligence and Design (ISCID2010). pp. 196-200.
Lin, C.J., Chen, C.H. & Lin,
C.T. 2009. A hybrid of cooperative particle swarm optimization and cultural
algorithm for neural fuzzy network and its prediction applications. IEEE
Trans. on Systems, Man, and Cybernetics--Part C: Applications and Reviews 38(1):
55-68.
Montgomery, J. 2010. Crossover
and the different faces of differential evolution searches. Proc. of the
IEEE Congress on Evolutionary Computation. pp. 1804-1811.
Montgomery, J. & Chen, S.
2010. An analysis of the operation of differential evolution at high and low
crossover rates. Proc. of the IEEE Congress on Evolutionary Computation. pp.
881-888.
Natsuki, H. & Hitoshi, I.
2003. Particle swarm optimization with Gaussian mutation. Proceedings of the
2003 IEEE Swarm Intelligence Symposium. pp. 72-79.
Neri, F. & Tirronen, V. 2010.
Recent advances in differential evolution: A survey and experimental analysis. Artificial
Intelligence Review 33(1-2): 61-106.
Ronkkonen, J., Kukkonen, S. &
Price, K.V. 2005. Real-parameter optimization with differential evolution. Proceedings
of IEEE Congress on Evolutionary Computation. pp. 506-513.
Saruhan, H. 2014. Differential
evolution and simulated annealing algorithms formechanical systems design. Engineering
Science and Technology, an International Journal 17(3): 131-136.
Shang, Y.W. & Qin, Y.H. 2006.
A note on the extended rosenbrock function. Evolutionary Computation 14(1):
119-126.
Simon, D. 2013. Evolutionary
Optimization Algorithms. New York: Wiley.
Storm, R. & Price, K. 1997.
Differential evolution - A simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11(4):
341-359.
Yang, Z., Tang, K. & Yao, X.
2010. Scalability of generalized adaptive differential evolution for
large-scale continuous optimization. Soft Computing 15(11): 2141-2155.
Wang, J.Z., Wang, J.J., Zhang,
Z.G. & Guo, S.P. 2011. Forecasting stock indices with back propagation
neural network. Expert Systems with Applications 38(11): 14346-14355.
*Pengarang untuk
surat-menyurat; email: cjlin@ncut.edu.tw
|