Sains Malaysiana 44(12)(2015): 1729–1738
A Study on Development of Automation Diagnosis of Liquid Based Cytology
(Suatu Kajian Pembangunan Diagnosis
Automasi Sitologi berasaskan Cecair)
SEONG-HYUN
KIM1, HAN-YEONG
OH2 & DONG-WOOK
KIM*1,3
1Division of Biomedical Engineering, Chonbuk National
University, 567 Baekje-daero, Deokjin-gu
Jeonju-si,
Jeonbuk, South Korea
2Department of
Healthcare Engineering, Chonbuk National University, 567 Baekje-daero,
Deokjin-gu
Jeonju-si,
Jeonbuk, South Korea
3Research Center of
Healthcare & Welfare Instrument for the Aged, Chonbuk National University
567 Baekje-daero,
Deokjin-gu, Jeonju-si, Jeonbuk, South Korea
Diserahkan: 2 September
2014/Diterima: 23 Jun 2015
ABSTRACT
Cervical cancer afflicts women
worldwide. The patients’ mortality with cancer has been increased by changing
to westernized dietary habit and lifestyle. In order to detect early cervical
cancer, a liquid-based cytology (LBC) was used to examine the
exfoliated cells collected from the cervix. This procedure helps to decrease
the mortality rate. However, this test mostly involves manual examination by
the pathologists. This procedure needs to develop more efficient tool in
detecting cervical cancer which rate kept increasing. As such, this study was
designed to develop some methods to increase the effectiveness of LBC.
The diagnosis algorithm was also established to diagnose the processed cell
images via an imaging process algorithm based on the diagnosis criteria. A cell
diagnosis program based on GUI, combined with the imaging process
and the diagnosis algorithms were developed to automate the test process. The
results of this studies showed that this new program can be used for effective
diagnosis of cervical cancer. Moreover, it was deemed to increase the precision
and accuracy of diagnosis and save patient time.
Keywords: Automation diagnosis;
diagnosis algorithm; image processing algorithm; liquid based cytology (LBC);
uterine cervical cancer
ABSTRAK
Kanser pangkal rahim menyerang
wanita di seluruh dunia. Kematian pesakit kanser telah meningkat akibat
penukaran tabiat pemakanan dan gaya hidup yang kebaratan. Untuk pengesanan awal
barah pangkal rahim, sitologi berasaskan cecair (LBC)
digunakan untuk mengkaji sel-sel yang dikumpul daripada serviks. Prosedur ini
membantu mengurangkan kadar kematian. Walau bagaimanapun, ujian ini
kebanyakannya melibatkan pemeriksaan secara manual oleh ahli patologi. Prosedur
ini perlu membangunkan alat yang lebih cekap untuk mengesan kanser pangkal
rahim kerana kadarnya yang semakin meningkat. Oleh yang demikian, kajian ini
telah direka untuk mencadangkan beberapa kaedah untuk meningkatkan keberkesanan LBC.
Diagnosis algoritma juga dibangunkan untuk mendiagnosis proses imej sel melalui
suatu proses pengimejan algoritma berdasarkan kriteria diagnosis. Suatu program
sel diagnosis berdasarkan GUI, digabungkan dengan proses
pengimejan dan diagnosis algoritma telah dibangunkan untuk mengautomasikan
proses ujian. Keputusan kajian ini menunjukkan bahawa program baru ini boleh
digunakan untuk diagnosis kanser pangkal rahim dengan berkesan. Selain itu, ia
dilihat boleh meningkatkan kepersisan dan ketepatan diagnosis dan menjimatkan
masa pesakit.
Kata kunci: Algoritma pemprosesan imej; diagnosis algoritma;
diagnosis automasi; kanser pangkal rahim; sitologi berasaskan cecair (LBC)
RUJUKAN
h t t p : / /www.
c a n c e r. g o . k r /mb s / c a n c e r / s u b v i ew. jsp?id=cancer_020302000
000.
http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_
cd=1012.
Abulafia, O.,
Pezzullo, J.C. & Sherer, D.M. 2003. Performance of ThinPrep liquid-based
cervical cytology in comparison with conventionally prepared Papanicolaou
smears: A quantitative survey. Gynecologic Oncology 90(1): 137-144.
Bracamontes,
E.A.M., Rosas, M.E.M., Velasco, M.M.M., Reyes, H.L.M., Sandoval, J.R.M. &
Avila, H.C. 2012. Implementation of Hough transform for fruit image
segmentation. Procedia Engineering 35: 230-239.
Bumford, P.
2003. Empirical comparison of cell segmentation algorithms using an annotated
dataset. Image Processing 2: 1073-1076.
Chankong, T.,
Umpon, N.T. & Auephanwiriyakul, S. 2014. Automatic cervical cell
segmentation and classification in pap smears. Computer Methods and Programs
in Bio Medicine 113(2): 539-556.
Chen, Y.,
Adjouadi, M., Han, C., Wang, J., Barreto, A., Rishe, N. & Andrian, J. 2010.
A highly accurate and computationally efficient approach for unconstrained iris
segmentation. Image and Vision Computing 28(2): 261-269.
Choi, Y.D., Han,
C.W., Kim, J.H., Oh, I.J., Lee, J.S., Nam, J.H., Juhn, S.W. & Park, C.S.
2008. Effectiveness of sputum cytology using ThinPrep method for evaluation of
lung cancer. Diagnostic Cytopathology 36(3), 167-171.
Chung, K.L.,
Lin, Z.W., Huang, S.T., Huang, Y.H. & Liao, H.Y.M. 2010. New
orientation-based elimination approach for accurate line-detection. Pattern
Recognition Letters 31(1): 11-19.
De, S., Stanley,
R.J., Lu, C., Long, R., Antani, S., Thoma, G. & Zuna, R. 2013. A
fusion-based approach for uterine cervical cancer histology image
classification. Computerized Medical Imaging and Graphics 37(7):
475-487.
Harandi, N.M.,
Sadri, S., Moghaddam, N.A. & Amirfattahi, R. 2010. An automated method for
segmentation of epithelial cervical cells in images of ThinPrep. Journal of
Medical Systems 34(6): 1043-1058.
Hausen, H.Z.
1977. Human papillomaviruses and their possible role in squamous cell
carcinomas. Current Topic Microbiology Immunology 78: 1-30.
Hoda, R.S. &
Hoda, S.A. 2006. Fundamentals of Pap Test Cytology. New York: Humana
Press.
Hussin, R.,
Juhari, M.R., Kang, N.W., Ismail, R.C. & Kamarudin, A. 2012. Digital image
processing techniques for object detection from complex background image. Procedia
Engineering 41: 340-344.
Hwang, I.S.,
Kang, Y.N., Kwon, K.Y., Kwon, S.Y., Kim, S.P., Lee, S.S., Jung, H.R. &
Choe, M.S. 2011. Comparative study of relative value for diagnostic procedure
of surgical pathology in Korea and United States. The Korean Journal of
Pathology 45(1): 9-14.
Jang, J.J., Kim,
J.S., Cho, K.J., Khang, S.K., Nam, J.H. & Gong, G.Y. 2002. A comparison of
autocyte PREP with matched conventional smear in cervicovaginal cytology. The
Korean Journal of Cytopathology 13(1): 8-13.
Jeon, Y.K., Kim,
O.R., Park, K.W., Kang, S.B. & Park, I.A. 2004. Liquid-based cytology using
monoprep 2 system in cervicovaginal cytology: Comparative study with
conventional pap smear and histology. The Korean Journal of Cytopathology 15(l):
33-39.
Jeong, Y.K.
& Baek, J.S. 2008. Developing a GUI-based standalone application of matlab
program for windows. Journal of Korean Data and Information Science Society 19(2):
519-529.
Jiang, L. 2012.
Efficient randomized Hough transform for circle detection using novel
probability sampling and feature points. Optik 123(20): 1834-1840.
Joo, S.Y., Yang,
Y.S., Moon, W.K. & Kim, H.C. 2004. Computer-aided diagnosis of solid breast
nodules: Use of an artificial neural network based on multiple sonographic
features. IEEE Transactions on Medical Imaging 23(10): 1292-1300.
Kim, Y.T. 2007.
Causes and diagnoses of cervical cancer. Journal of the Korean Medical
Association 50(9): 769-777.
Koh, J.S., Cho,
S.Y., Ha, H.J., Kim, J.S. & Shin, M.S. 2007. Cytologic evaluation of
CellPrep® liquid-based cytology in cervicovaginal, body fluid, and urine
specimens. The Korean Journal of Cytopathology 18(1): 29-35.
Lee, K.C., Jung,
C.K., Lee, A.H., Jung, E.S., Choi, Y.J., Park, J.S. & Lee, K.Y. 2007. A
comparision of surepath™ liquid-based smear with a conventional smear for
cervicovaginal cytology-with reference to a histological diagnosis. The
Korean Journal of Cytopathology 18(1): 20-28.
Lee, S., Park,
J.H., Do, S.I., Kim, Y.W., Lee, J.H., Chang, S.G. & Park, Y.K. 2007.
Diagnostic value of urine cytology in 236 cases; Comparison of liquid-based
preparation and conventional cytospin method. The Korean Journal of
Cytopathology 18(2): 119-125.
Li, B., Peng,
K., Ying, X. & Zha, H. 2012. Vanishing point detection using cascaded 1D
Hough transform from single images. Pattern Recognition Letters 33(1):
1-8.
Li, K., Lu, Z.,
Liu, W. & Yin, J. 2012. Cytoplasm and nucleus segmentation in cervical
smear images using radiating GVF snake. Pattern Recognition 45(4):
1255-1264.
Lin, Z. &
Yu, H. 2011. The pupil location based on the OTSU method and Hough transform. Procedia
Environmental Sciences 8: 352-356.
Linder, J. 1998.
Recent advances in thin-layer cytology. Diagnostic Cytopathology 18(1):
24-32.
Maksem, J.A.,
Dhanwada, V., Trueblood, J.E., Weidmann, J., Kane, B., Bolick, D.R.,
Bedrossian, D.F.I., Kurtycz, C.W.M. & Stewart, J. 2006. Testing automated
liquid-based cytology samples with a manual liquid-based cytology method using
residual cell suspensions from 500 ThinPrep cases. Diagnostic Cytopathology 34(6):
391-396.
Mat-Isa, N.A.,
Mashor, M.Y. & Othman, N.H. 2008. An automated cervical pre-cancerous
diagnostic system. Artificial Intelligence in Medicine 42: 1-11.
Park, J.M., Lee,
J.G. & Suh, I.S. 2005. Clinical efficacy of manual liquid-based
cervicovaginal cytology preparation: Compratative study with conventional
papanicolaou test. The Korean Journal of Cytopathology 16(1): 10-17.
Plissiti, M.E.
& Nikou, C. 2011. Automated detection of cell nuclei in pap smear images
using morphological reconstruction and clustering. IEEE Transactions on
Information Technology in Biomedicine 15(2): 233-241.
Plissiti, M.E., Nikou,
C. & Charchanti, A. 2011. Combining shape, texture and intensity features
for cell nuclei extraction in pap smear images. Pattern Recognition Letters 32(6):
838-853.
Prasad, D.K.,
Leung, M.H. & Cho, S.Y. 2012. Edge curvature and convexity based ellipse
detection method. Pattern Recognition 45(9): 3204-3221.
Schledermann,
D., Ejersbo, D. & Hoelund, B. 2006. Improvement of diagnostic accuracy and
screening conditions with liquid-based cytology. Diagnostic Cytopathology 34(11):
780-785.
Zhang, L., Kong,
H., Chin, C.T., Liu, S., Chen, Z., Wanga, T. & Chen, S. 2014. Segmentation
of cytoplasm and nuclei of abnormal cells in cervicalcytology using global and
local graph cuts. Computerized Medical Imaging and Graphics 38(5):
369-380.
*Pengarang untuk surat-menyurat; email:
biomed@jbnu.ac.kr
|