Sains Malaysiana 45(2)(2016): 157–166
Physicochemical
Parameters of Bakun Reservoir in Belaga, Sarawak, Malaysia,
13 Months after
Reaching Full Supply Level
(Parameter Fizikokimia
Takungan Bakun di Belaga, Sarawak, Malaysia,
13 Bulan selepas
Mencapai Tahap Bekalan Penuh)
Teck-Yee Ling*1, Lee Nyanti2, Theresa Muan2, Jongkar Grinang3, Siong-Fong Sim1 & Aazani Mujahid2
1Department
of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia
Sarawak, 94300 Kota Samarahan, Sarawak Bumi Kenyalang, Malaysia
2Department
of Aquatic Science, Faculty of Resource Science and Technology, Universiti
Malaysia Sarawak, 94300 Kota Samarahan, Sarawak Bumi Kenyalang, Malaysia
3Institute
of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300
Kota Samarahan, Sarawak Bumi Kenyalang, Malaysia
Diserahkan:
18 Mac 2015/Diterima: 5 Julai 2015
ABSTRACT
Determining the water quality of Bakun Reservoir 13 months after
it operates at full supply level is crucial for better understanding of changes
in the physicochemical parameters, which may enable the prediction of its
effects on the survival of aquatic life in the reservoir. This study determined
13 physicochemical parameters at six stations within the reservoir at fixed depths.
The results showed that the minimum 5 mg/L of dissolved oxygen (DO)
required for sensitive aquatic organisms was recorded at 6 m depth. However, DO was
not detectable at depths exceeding 7 m. The water was acidic at depths of more
than 10 m. Turbidity and total suspended solids increased corresponding with
depth. Inorganic nitrogen were predominantly in the form of ammonia-nitrogen,
creating an unhealthy environment for aquatic life. Concentration of Chl-a was
significantly higher at the subsurface water than 30 m depth in four out of six
stations. The present study shows changes in water quality as compared to the
pre-impounded period and 15 months after the filling phase, in particular,
stratification of dissolved oxygen, thermocline conditions and alkalinity. The
changes varied according to the distance from the dam and may have been
influenced by existing land developments within the area such as the
construction of the Murum Hydroelectric Dam, oil palm plantations and timber
concessionares. Though the water quality might have deteriorated, further study
is needed to determine if this condition will prolong.
Keywords: Impoundment; Murum; new reservoir; stratification;
tropical reservoir
ABSTRAK
Menentukan
kualiti air Empangan Bakun 13 bulan selepas ia beroperasi pada tahap
bekalan penuh adalah penting untuk lebih memahami perubahan dalam
parameter fizikokimia, yang membolehkan ramalan tentang kesannya
terhadap kewujudan hidupan akuatik dalam takungan. Kajian ini menentukan
13 parameter fizikokimia di enam stesen dalam takungan pada kedalaman
yang tetap. Keputusan menunjukkan bahawa minimum 5 mg/L bagi oksigen
terlarut (DO) diperlukan oleh organisme
akuatik sensitif dicatatkan pada kedalaman 6 m. Walau bagaimanapun,
DO ini
tidak dikesan pada kedalaman melebihi 7 m. Air adalah berasid pada
kedalaman lebih daripada 10 m. Kekeruhan dan jumlah pepejal terampai
meningkat sejajar dengan kedalaman. Nitrogen bukan organik yang
kebanyakannya dalam bentuk ammonia-nitrogen, mewujudkan persekitaran
yang tidak sihat untuk hidupan akuatik. Kepekatan Chl-a adalah lebih
tinggi pada air subpermukaan daripada kedalaman 30 m di empat daripada
enam stesen. Kajian ini menunjukkan perubahan dalam kualiti air
berbanding dengan tempoh prapembendungan dan 15 bulan selepas fasa
mengisi, khususnya, penstratuman oksigen
terampai, keadaan termoklin dan alkalin. Perubahan ini berbeza mengikut
jarak dari empangan dan mungkin dipengaruhi oleh pembangunan tanah
sedia ada dalam kawasan seperti pembinaan Empangan Hidroelektrik
Murum, ladang kelapa sawit dan konsesi perkayuan. Walaupun kualiti
air mungkin semakin merosot, kajian tambahan diperlukan untuk menentukan
jika keadaan ini akan berpanjangan.
Kata
kunci: Murum; pembendungan; stratifikasi; takungan baru; takungan tropika
RUJUKAN
APHA.
1998. Standard Methods for Examinations of Water and Wastewater. 20th
ed. APHA, AWWA, WEF, Washington D.C.
Beschta,
R.L. 1978. Long-term patterns of sediment production following road
construction and logging in Oregon Coast Range. Water Resources Research 14(6):
1011-1015.
Chapman,
D.V. 1996. Water Quality Assessments: A Guide to the Use of Biota, Sediments
and Water in Environmental Monitoring. London: E & FN Spon. p. 651.
Choy,
Y.K. 2005. Energy demand, economic growth, and energy efficiency - the Bakun
dam-induced sustainable energy policy revisited. Energy Policy 33:
679-689.
Hach.
2000. DR/2800 Spectrophotometer Procedure Manual. USA: Hach Company.
Kivrak,
E. & Hasan, G. 2005. Seasonal variations of chlorophyll-a in
Demirdoven Dam Reservoir (Erzurum, Turkey) in relation to phytoplankton density
and environmental factors. Journal of Environmental Biology Academy of
Environmental Biology India 26(3): 597-602.
Ling,
T.Y., Lee, T.Z.E. & Nyanti, L. 2013a. Phosphorus in Batang Ai Hydroelectric
Dam Reservoir, Sarawak, Malaysia. World Applied Sciences Journal 28(10):
1348-1354.
Ling,
T.Y., Nyanti, L., Leong, C.K. & Wong, Y.M. 2013b. Comparison of water
quality at different locations at Batang Ai Reservoir, Sarawak, Malaysia. World
Applied Sciences Journal 26(11): 1473-1481.
Ling,
T.Y., Paka, D.D., Nyanti, L., Norhadi, I. & Emang, J.J.J. 2012. Water
quality at Batang Ai Hydroelectric Reservoir (Sarawak, Malaysia) and
implications for aquaculture. International Journal of Applied Science and Technology 2(6): 23-30.
Mohamed,
M., Ismail, G. & Memon, A. 1997. Bio-physical Impacts of Large Dams in
The Humid Tropics: The Bakun Project in Sarawak, Malaysia. EPMRC Research
Paper Series No. P7, Department of Management, Uni. Of Otago, Dunedin, New
Zealand.
Nyanti,
L., Ling, T.Y. & Muan, T. 2015. Water quality of Bakun Hydroelectric Dam
Reservoir, Sarawak, Malaysia, during the construction of Murum Dam. ESTEEM
Academic Journal 11(Special Issue 1): 81-88.
Nyanti,
L., Ling, T.Y. & Grinang, J. 2012. Physico-chemical characteristics in the
filling phase of Bakun Hydroelectric Reservoir, Sarawak, Malaysia. International
Journal of Applied Science and Technology 2(6): 92-101.
Patrick
Luyong. 2008. Personal Communication. Agriculture Officer Batang Ai Reservoir.
Prairie,
Y.T., Duarte, C.M. & Kalff, J. 1989. Unifying nutrient-chlorophyll
relationship in lakes. Canadian Journal of Fisheries and Aquatic Science 46:
1176-1182.
RECODA.
2014. Invest in SCORE. Regional Corridor Development Authority, Sarawak.
http://www.recoda.com.my. Accessed on 28 August 2014.
SEB.
2013. General Overview of the Sarawak Hydroelectric Projects. Sarawak
Energy Berhad. http://www.sarawakenergy.
com.my/index.php/hydroelectric-projects/about-hydropower. Accessed on 14 July
2014.
SIWRM.
2008. Hydroelectric Power Dams in Sarawak. Sarawak Integrated Water
Resources Management - Master Plan. http://www.siwrs.com.my/modules/iwrm/.
Accessed on 14 July 2014.
Sobolev,
D., Moore, K. & Morris, A.L. 2009. Nutrients and light limitation of
phytoplankton biomass in a turbid Southeastern Reservoir: Implications for
water quality. Southeastern Naturalist 8(2): 255-266.
USBR. 2005. Managing
Water in the West – Hydropower Program. US Department of the
Interior, Bureau of Reclamation. http://www.usbr.gov/power/. Accessed on 28
August 2014.
*Pengarang untuk surat-menyurat;
email: tyling@frst.unimas.my
|