Sains Malaysiana 46(9)(2017): 1465–1469
http://dx.doi.org/10.17576/jsm-2017-4609-15
Effect of Storage Time and Concentration of Used Cooking Oil on Polyhydroxyalkanoates
(PHAs) Production by Cupriavidus necator H16
(Kesan Masa Penyimpanan dan Kepekatan Minyak Masak Terpakai
Terhadap Pengeluaran
Polihidroksyalkanoat melalui Cupriavidus necator H16)
CHATSUDA
KONGPENG1,
JUTARUT
IEWKITTAYAKORN1
& WILAIWAN CHOTIGEAT1,2*
1Department
of Molecular Biotechnology and Bioinformatics, Faculty of Science
Prince
of Songkla University, Hat Yai, Songkhla 90112, Thailand
2Center
of Excellent for Genomics & Bioinformatics Research, Faculty
of Science, Prince of Songkla University, Hat Yai, Songkhla 90112,
Thailand
Diserahkan:
31 Ogos 2016/Diterima: 17 Januari 2017
ABSTRACT
Polyhydroxyalkanoates
(PHAs)
can be used to replace petrochemical plastics in many applications.
However, their production has limitation due to production cost.
This research was conducted using alternative carbon source from
waste to synthesize PHAs
by Cupriavidus necator H16. In this study, PHAs
were produced from used cooking oil (UCO) and compared with production
PHAs from palm oil. Two UCO storage
times (4 and 10 weeks) and three UCO concentrations (10, 20 and
30 g/L) were used to determine the most optimum condition for PHA synthesis.
The best optimum condition for PHA synthesis was cultivated in
the medium containing 30 g/L of UCO at 4 weeks storage. The cell
dry weight (CDW) and PHA content
were 5.26±0.61 g/L and 27.36±2.04 wt. %, respectively. These results
were similar to cell cultivation using 20 g/L palm oil and 1% of
fructose (5.93±0.33 g/L of CDW and 26.96±6.14 wt. % of PHA contents).
In addition, PHA content from the culture with 10 g/L of UCO
stored for 10 weeks was higher than PHA content from the culture with
20 and 30 g/L of UCO. Thus, it can be concluded that UCO
could be used in PHA production.
Keywords: Bioplastics;
Cupriavidus necator H16; polyhydroxyalkanoates
(PHAs); used cooking oil (UCO)
ABSTRAK
Polihidroksialkanoat
(PHA)
boleh digunakan untuk menggantikan plastik petrokimia dalam kebanyakan
aplikasi. Walau bagaimanapun, pengeluarannya mempunyai had kerana
kos pengeluaran. Kajian ini dijalankan menggunakan sumber karbon
alternatif daripada bahan buangan untuk mensintesis PHA menggunakan Cupriavidus necator H16. Dalam kajian ini, PHAs
dihasilkan daripada minyak masak terpakai (UCO)
dan dibandingkan dengan pengeluaran PHA daripada minyak sawit. Dua
masa simpanan UCO (dua 4 dan 10 minggu) serta tiga kepekatan UCO
(10, 20 dan 30 g/L) telah digunakan untuk menentukan
syarat keadaan optimum untuk sintesis PHA. Keadaan optimum terbaik untuk sintesis PHA
ialah dieram pada medium yang mengandungi 30 g/L UCO pada
4 minggu penyimpanan. Berat sel kering (CDW) dan kandungan PHA
masing-masing adalah 5.26±0.61 g/L dan 27.36±2.04
% bt. Keputusan ini adalah sama dengan penanaman sel menggunakan
20 g/L minyak sawit dan 1% fruktosa (5.93±0.33 g/L CDW
dan 26.96±6.14 % bt. kandungan PHA). Di samping itu, kandungan PHA
daripada kultur dengan 10 g/L UCO yang disimpan selama 10 minggu adalah
lebih tinggi daripada kandungan PHA yang dikultur dengan 20 dan
30 g/L UCO. Oleh itu, dapat disimpulkan bahawa UCO boleh
digunakan dalam pengeluaran PHA.
Kata kunci: Bioplastik;
minyak masak terpakai (UCO); Necator cupriavidus
H16; polihidroksialkanoat (PHA)
RUJUKAN
Batcha,
A.F.M., Prasad, D.M.R., Khan, M.R. & Abdullah, H. 2014. Biosynthesis
of poly (3-hydroxybutyrate) (PHB) by Cupriavidus Necator H16
from Jatropha oil as carbon source. Bioprocess and Biosystems
Engineering 37(5): 943-951.
Bhubalan,
K., Chuah, J.A., Shozui, F., Brigham, C.J., Taguchi, S., Sinskey,
A.J., Rha, C. & Sudesh, K. 2011. Characterization of the highly
active polyhydroxyalkanoate synthase of Chromobacterium Sp.
Strain USM2. Applied and Environmental Microbiology 77(9):
2926-2933.
Cai,
Z.Z., Wang, Y., Teng, Y.L., Chong, K.M., Wang, J.W., Zhang, J.W.
& Yang, D.P. 2015. A two-step biodiesel production process from
waste cooking oil via recycling crude glycerol esterification catalyzed
by alkali catalyst. Fuel Processing Technology 137: 186-193.
Castilho,
L.R., Mitchell, D.A. & Freire, D.M. 2009. Production of polyhydroxyalkanoates
(PHAs) from waste materials and by-products by submerged and solid-state
fermentation. Bioresour. Technol. 100(23): 5996-6009.
Chee,
J.Y., Yoga, S.S., Lau, N.S., Ling, S.C., Abed, R.M.M. & Sudesh,
K. 2010. Bacterially produced polyhydroxyalkanoate (PHA): Converting
renewable resources into bioplastics. In Current Research, Technology
and Education Topics in Applied Microbiology and Applied Biotechnology,
edited by Mendez- Vilas, A. Spain: Formatex Research Center.
pp. 1395-1404.
Dawes,
E.A. & Senior. P.J. 1973. The role and regulation of energy
reserve polymers in micro-organisms. Advances in Microbial Physiology
10: 135-266.
Eggink,
G., van der Wal, H. Huijberts, G.N.M. & de Waard, P. 1992. Oleic
acid as a substrate for Poly-3-Hydroxyalkanoate formation in Alcaligenes
eutrophus and Pseudomonas putida. Industrial Crops
and Products 1(2-4): 157-163.
Franz,
A., Rehner, R., Kienle, A. & Hartmut, G. 2010. Growth and PHA
production of wild-type Ralstonia eutropha H16 using glucose
and fructose as single carbon substrates. www. researchgate.net/publication/45940713_Growth_and_PHA_
production_of_wild-type_Ralstonia_eutropha_H16_using_ glucose_and_fructose_as_single_carbon_substrates
Fukui,
T. & Doi, Y. 1998. Efficient production of polyhydroxyalkanoates
from plant oils by Alcaligenes eutrophus and its recombinant
strain. Applied Microbiology and Biotechnology 49(3): 333-336.
Kek,
Y.K. 2009. Utilization of Palm Oil-Based by-Products and Waste as
Feedstock for Polyhydroxyalkanoate Biosynthesis. Master of Science
thesis (Unpublished).
Lageveen,
R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G. &
Witholt, B. 1988. Formation of polyesters by Pseudomonas Oleovorans:
Effect of substrates on formation and composition of poly- (R)-3-Hydroxy-alkanoates
and poly- (R)- 3-hydroxyalkenoates. Applied and Environmental
Microbiology 54(12): 2924-2932.
Madison,
L.L. & Huisman, G.W. 1999. Metabolic engineering of poly (3-hydroxyalkanoates):
From DNA to plastic. Microbiology and Molecular Biology Reviews
63(1): 21-53.
Mahesar,
S.A., Sherazi, S.T.H., Khaskheli, A.R., Kandhro, A.A. & Uddin,
S. 2014. Analytical approaches for the assessment of free fatty
acids in oils and fats. Analytical Methods 6: 4956-4963.
Martino,
L., Cruz, M.V., Scoma, A., Freitas, F., Bertin, L., Scandola, M.
& Reisb, M.A.M. 2014. Recovery of amorphous polyhydroxy-butyrate
granules from Cupriavidus necator cells grown on used cooking
oil. International Journal of Biological Macromolecules 71:
117-123.
Oyem,
H.H. 2011. Monitoring the free fatty acid level of crude palm oil
stored under light of different wavelenghts. American Journal
of Food Technology 6(8): 701-704.
Teoh,
C.H. 2002. The Palm Oil Industry in Malaysia: From Seed to Frying
Pan. WWF Switzerland.
Verlinden,
R.A.J., Hill, D.J., Kenward, M.A., Williams, C.D., Piotrowska-Seget,
Z. & Radecka, I.K. 2011. Production of Polyhydroxyalkanoates
from waste frying oil by Cupriavidus necator. AMB Express
1: 11. doi:10.1186/2191-0855-1-11.
*Pengarang untuk surat-menyurat;
email: wilaiwan58@hotmail.com
|