Sains Malaysiana 46(9)(2017): 1617–1623
http://dx.doi.org/10.17576/jsm-2017-4609-34
Influence of Water-to-Cement Ratio on the Compressive Strength of Cement-Biochar-Spent
Ion Exchange Resins Matrix
(Pengaruh Nisbah Air-Simen terhadap Kekuatan Mampatan Matriks
Simen-Bioarang-Resin Pertukaran Ion Terpakai)
ZALINA
LAILI1*,
MUHAMAD
SAMUDI
YASIR1
& MOHD ABDUL WAHAB
YUSOF2
1Nuclear
Science Programme, School of Applied Physics, Faculty of Science
& Technology
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Malaysian
Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan, Malaysia
Diserahkan:
7 Ogos 2014/Diterima: 23 April 2017
ABSTRACT
The influence of water-to-cement
ratio (w/c) on the compressive strength of cement-biochar-spent
resins matrix was investigated. Spent resins waste from nuclear
reactor operation was solidified using cement with w/c ranging
from 0.35 to 0.90 by weight. In this study, biochar was used
as a cement admixture. Some properties of spent resins and biochar
were determined prior to the formulation study. Compressive
strength of harden cement-biochar-spent resins matrix was determined
at 28 days. The compressive strength of cement-biochar-spent
resins matrix was found to depend on the w/c and the amount
of spent resins added to the formulation. The immersion test
of cement-biochar-spent resins matrix showed no significant
effects of cracking and swelling. The compressive strength of
the cement-biochar-spent resins matrix increased after two weeks
in water immersion test.
Keyword: Compressive
strength; radioactive waste; solidification; spent ion exchange
resins; water-to-cement ratio
ABSTRAK
Pengaruh nisbah air-simen
(w/c) terhadap kekuatan mampatan matriks simen-bioarang-resin
pertukaran ion terpakai telah dikaji. Sisa resin terpakai daripada
operasi reaktor nuklear telah dipejalkan dengan menggunakan
simen dengan w/c daripada 0.35 hingga 0.90. Dalam kajian ini,
bioarang digunakan sebagai bahan tambah kepada simen. Beberapa
ciri resin terpakai dan bioarang telah ditentukan sebelum kajian
formulasi. Kekuatan mampatan matriks simen-bioarang-resin terpakai
yang mengeras ditentukan pada umur 28 hari. Kekuatan mampatan
simen-bioarang-resin terpakai didapati bergantung kepada nisbah
simen-air dan jumlah resin terpakai yang ditambah kepada formulasi.
Ujian rendaman air bagi matriks simen-bioarang-resin terpakai
menunjukkan tiada kesan ketara keretakan dan pengembangan berlaku.
Kekuatan mampatan matriks simen-bioarang-resin terpakai didapati
meningkat selepas dua minggu ujian rendaman air.
Kata kunci: Kekuatan
mampatan; nisbah simen-air; pemejalan; resin pertukaran ion
terpakai; sisa radioaktif
RUJUKAN
ASTM Standards C39/C39M-09a. 2010. Standard Test Method for Compressive
Strength of Cylindrical Concrete Specimens ASTM International,
West Conshohocken, United States.
Atkins, M. & Glasser, F.P. 1992. Application of Portland cement-based
materials to radioactive waste immobilization. Waste Management
12: 105-131.
Bentz, D.P. 2008. A review of early-age properties of cement-based
materials. Cement & Concrete Research 38: 196-204.
Chen, C., Chen, G., Chen, L., Chen, Y., Lehmann, J. & McBride,
B. 2011. Adsorption of copper and zinc by biochars produced
from pyrolysis of hardwood and corn straw in aqueous solution.
Bioresource Technology 102(19): 8877-8884.
Chun, Y., Sheng, G.Y., Chiou, C.T. & Xing, B.S. 2004. Composition
and sorptive properties of crop residue-derived char. Environ.
Sci. Technol. 38: 4649-4655.
Glasser,
F.P. 2011. Application of inorganic cements to the conditioning
and immobilization of radioactive waste. In Handbook of Advanced
Radioactive Waste Conditioning Technologies, edited by Ojovon,
M. UK: Woodhead Publishing Limited. pp. 62-134.
Hu, J., Zhi, G. &
Kejin, W. 2014. Influence of cement fineness and water-to-cement
ratio on mortar early-age heat of hydration and set times. Construction
and Building Materials 50: 657-663.
IAEA.
1985. Treatment of Spent Ion-Exchange Resins for Storage
and Disposal, Tech. Rep. Series No. 254, Vienna, Austria.
IAEA.
1993. Treatment and Conditioning of Spent Ion Exchange Resins
from Research Reactor, Precipitation Sludges and Other Radioactive
Concentrates. IAEA-TECDOC-689. Vienna, Austria.
IAEA,
2002. Treatment of Spent Ion-Exchange Resins for Storage
and Disposal. Tech, Rep. Series No. 254, Vienna, Austria.
Junfeng,
L. & Jianlong, W. 2006. Advances in cement solidification
technology for waste radioactive ion exchange resins: A review.
Journal of Harzardous Materials 135(1-3): 443-448.
Lee,
D.J. & Wilding, C.R. 1989. Waste form properties. Proceedings
of the Waste Management Symposia. pp. 319- 325.
NRC-U.S.
Nuclear Regulatory Commission. 1991. Waste Form Technical
Position. Revision 1. U.S. Nuclear Regulatory Commission,
Washington, D.C.
Ojovon,
M., Varlackova, G.A., Golubeva, G.A. & Burlaka, O.N. 2011.
Long-term field and laboratory leaching tests of cemented radioactive
wastes. Journal of Hazardous Materials 187: 296-302.
Ouellet,
S., Bussière, B., Aubertin, M. & Benzaazoua, M. 2007. Microstructural
evolution of cemented paste backfill: Mercury intrusion porosimetry
test results. Cem. Concr. Res. 37(12): 1654-1665.
Saleh,
H.M. 2014. Stability of cemented dried water hyacinth used for
biosorption of radionuclides under various circumstances. Journal
of Nuclear Materials 446: 124-133.
Sun,
Q., Li, J. & Wang, J. 2011. Solidification of borate radioactive
resins using sulfoaluminate cement blending with zeolite. Nuclear
Engineering and Design 241: 5308-5315.
Tavcar,
P., Smodis, B. & Benedik, L. 2007. Radiological characterization
of low-and intermediate-level radioactive wastes. Journal
of Radioanalytical & Nuclear Chemistry 273(3): 593-596.
Tong,
X.J., Li, J.Y. & Xu, R.K. 2011. Adsorption of Cu (II) by
biochars generated from three crop straws. Chemical Engineering
172(2-3): 828-834.
*Pengarang untuk surat-menyurat;
email: liena@nuclearmalaysia.gov.my