Sains Malaysiana 46(9)(2017): 1651–1657

http://dx.doi.org/10.17576/jsm-2017-4609-38

 

Effect of Space Holders on Fabrication of Porous Titanium Alloy-Hydroxyapatite Composite through Powder Injection Molding

(Kesan Pemegang Ruang terhadap Pembentukan Komposit Aloi Titanium-Hidroksiapatit

Berbusa melalui Pengacuan Suntikan Serbuk)

 

FARRAHSHAIDA MOHD SALLEH1, ABU BAKAR SULONG1*, MUHAMMAD RAFI RAZA3,

NORHAMIDI MUHAMAD1 & LIM TSIU FHANG1

 

1Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

2Faculty of Mechanical Engineering, Universiti Teknologi MARA, 40450 UiTM Shah Alam, Selangor Darul Ehsan, Malaysia

 

3Department of Mechanical Engineering, COMSATS Institute of Information Technology, Sahiwal, Pakistan

 

Diserahkan: 28 April 2016/Diterima: 31 Mei 2017

 

ABSTRACT

Powder injection molding (PIM) is able to produce porous titanium alloy/hydroxyapatite composite through the space holder technique. Thermal debinding and sintering processes were the main challenges due to different properties of metal and ceramic in producing such composite. This study focused on the effect of different space holders on the physical and mechanical properties of debound and sintered porous titanium aloi/hydroxyapatite composite. The feedstock is containing of 80 wt. % of titanium alloy/hydroxyapatite with 20 wt. % of space holders such as sodium chloride (NaCl) and polymethylmethacrylate (PMMA), respectively. The binders were then removed from the injected samples by two stages of debinding; solvent and thermal debinding. The sintering was performed at three different temperatures 1100oC, 1200oC and 1300oC at a heating rate of 10oC /min and holding time of 5 h. It was found that the samples containing PMMA space holder was fractured after sintering. While, the samples containing NaCl space holder successfully formed pores and not fractured. At sintering temperature of 1300oC, the density, compressive strength and porosity volume percentages for the sintered sample containing NaCl space holder were 3.05 g/cm3, 91.7 MPa. and 11.9 vol%, respectively.

 

Keywords: Hydroxyapatite; metal foam; powder injection molding; space holder; titanium alloy

 

ABSTRAK

Pengacuan suntikan serbuk (PIM) boleh menghasilkan komposit aloi titanium/hidroksiapatit berbusa dengan menggunakan teknik pemegang ruang. Proses bagi penyahikatan dan persinteran merupakan cabaran utama disebabkan sifat bahan logam dan seramik yang berbeza dalam penghasilan komposit tersebut. Fokus kajian ini adalah kesan berbeza pemegang ruang terhadap sifat fizikal dan mekanik penyahikatan serta persinteran komposit aloi titanium-hidroksiapatit berbusa. Bahan suapan mengandungi 80 % bt. aloi titanium/hidroksiapatit dengan 20 % bt. pemegang ruang seperti sodium klorida (NaCl) dan polimetilmetakrilat (PMMA). Bahan pengikat kemudian disingkirkan daripada sampel yang disuntik melalui dua peringkat penyahikatan; larutan dan penyahikatan terma. Persinteran dijalankan pada tiga suhu yang berbeza 1100oC, 1200oC dan 1300oC pada kadar pemanasan sebanyak 10oC /min dan masa pegangan selama 5 jam. Didapati sampel yang mengandungi pemegang ruang PMMA hancur selepas persinteran. Manakala, sampel yang mengandungi pemegang ruang NaCl berjaya menghasilkan liang-liang berbusa dan tidak hancur. Pada suhu persinteran 1300oC, ketumpatan, kekuatan mampatan dan peratusan isi padu keliangan sebanyak 3.05 g/cm3, 91.7 MPa. dan 11.9 vol%.

 

Kata kunci: Aloi Titanium; hidroksiapatit; logam berbusa; pemegang ruang; pengacuan suntikan serbuk

RUJUKAN

Ahmad, S., Muhamad, N., Muchtar, A., Sahari, J., Jamaludin, K.R., Ibrahim, M.H.I., Mohamad Nor, N.H. & Murtadhahadi. 2010. Characterisation of titanium foams sintered at different temperatures prepared by the slurry method. Sains Malaysiana 39(1): 77-82.

Arawi, A.Z.O., Ramli, R. & Talari, M.K. 2012. Study of sintering temperature for nano-hydroxyapatite with addition of titanium. Advanced Materials Research 538-541: 2392-2395.

Arifin, A., Sulong, A.B., Muhamad, N., Syarif, J. & Ramli, M.I. 2015. Powder injection molding of HA/Ti6Al4V composite using palm stearin as based binder for implant material. Material and Design 65: 1028-1034.

Arifin, A. 2015. Pengacuanan suntikan serbuk hidroksiapatit/ Ti6Al4V komposit menggunakan pengikat berasaskan stearin sawit, PhD Tesis, Universiti Kebangsaan Malaysia (Unpublished).

Best, S.M., Porter, A.E., Thian, E.S. & Huang, J. 2008. Bioceramics: Past, present and the future. Journal of the European Ceramic Society 28: 1319-1327.

Bram, M., Ahmad-Khanlou, A., Heckmann, A., Fuchs, B., Buchkremer, H. & Stöver, D. 2002. Powder metallurgical fabrication processes for NiTi shape memory alloy parts. Mater. Sci. Eng. A Struct. 337: 254-263.

Chu, C., Xue, X., Zhu, J. & Yin, Z. 2006. Fabrication and characterization of titanium-matrix composite with 20 vol% hydroxyapatite for use as heavy load-bearing hard tissue replacement. J. Mater. Sci-Mater. Med. 17: 245-251.

Deing, A., Luthringer, B., Laipple, D., Ebel, T. & Willumeit, R. 2014. A porous TiAl6V4 implant material for medical application. International Journal of Biomaterials 2014: Article ID. 904230.

Engin, G., Bülent, A. & Gülsoy, H.Ö. 2011. Injection molding of micro-porous titanium alloy with space holder technique. Rare Metals 30(6): 565-571.

Enneti, R.K., Park, S.J., German, R.M. & Atre, S.V. 2012. Review: Thermal debinding process in particulate materials processing. Materials and Manufacturing Processes 27: 103-118.

German, R.M. 1996. Sintering Theory and Practice. 1st ed. Canada: John Wiley & Son Inc.

Ibrahim, M.H.I., Muhamad, N. & Sulong, A.B. 2009. Rheological investigation of water atomised stainless steel. International Journal of Mechanical and Materials Engineering 4: 1-8.

Jha, N., Mondal, D.P., Dutta Majumdar, J., Badkul, A., Jha, A.K. & Khare, A.K. 2013. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route. Materials and Design 47: 810-819.

Ji, C.H., Loh, N.H., Khor, K.A. & Tor, S.B. 2001. Sintering study of 316L stainless steel metal injection molding parts using Taguchi method: Final density. Materials Science and Engineering A 311: 74-82.

Jurcyzk, M. 2012. Bionanomaterials for Dental Applications. New York: Taylor & Francis.

Köhl, M., Bram, M., Buchkremer, P., Stöver, D., Habijan, T. & Köller, M. 2008. In Proceedings of the Fifth International Conference on Porous Metals and Metallic Foams, edited by Lefeb-vre, P., Banhart, J. & Dunand, D.C. Destech Publications Inc. pp. 295-298.

Manonukul, A., Muenya, N., Leaux, F. & Amaranan, S. 2010. Effects of replacing metal powder space holder on metal foam produced by metal injection moulding. Journal of Materials Processing Technology 210: 529-535.

Murray, N.G.D. & Dunand, D.C. 2003. Microstructure evolution during solid-state foaming of titanium. Composite Science Technology 63: 2311-2316.

Nishiyabu, K., Matsuzaki, S., Okubo, K., Ishida, M. & Tanaka, S. 2005. Porous graded materials by stacked metal powder hot-press moulding. Materials Science Forum 492-493: 765-770.

Nomura, N., Sakamoto, K. & Takahashi, K. 2010. Fabrication and mechanical properties of porous Ti/HA for bone fixation devices. Materials Transactions 51(8): 1449-1454.

Oh, I.H., Nomura, N., Masahashi, N. & Hanada, S. 2003. Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Materialia 49: 1197-1202.

Omar, M.A. & Davies, H.A. 2001. The influence of PMMA content on the properties of 316L stainless steel MIM compact. J. of Materials Processing Technology 113: 471- 481.

Pachauri, P. & Hamiuddin, M. 2016. Optimization of debinding process in metal injection molding (MIM) for high density of sintered part. Int. J. Adv. Mater Metallurgical Eng. 2(1): 12-22.

Patnaik, P. 2003. Handbook of Inorganic Chemicals. New York: McGraw-Hill.

Pattanayak, D., Rao, B.T. & Mohan, T.R.R. 2011. Calcium phosphate bioceramics and bioceramic composites. J. Sol-Gel Sci. Technol. 59: 432-447.

Raza, M.R., Sulong, A.B., Muhamad, N., Majid, N.A. & Rajabi, J. 2015. Effects of binder system and processing parameters on formability of porous Ti-6Al-4V/HA composite through powder injection moulding. Material & Design 87: 386-392.

Raza, M.R., Sulong, A.B., Muhamad, N., Majid, N.A., Rajabi, J. & Amir, A. 2014. Optimization of binder and process parameters to produce Ti/HA foam through micro powder injection molding. Advanced Material Conference (AMC) 32: 307-312.

Thian, E.S., Loh, N.H., Khor, K.A. & Tor, S.B. 2002. Ti-6Al-4V/ HA composite feedstock for injection molding. Materials Letters 56: 522-532.

Thian, E.S., Loh, N.H., Khor, K.A. & Tor, S.B. 2001. Effects of debinding parameters on powder injection molded Ti- 6Al-4V/HA composite parts. Advances Powder Technology 12(3): 361-370.

Torres, Y., Pavon, J.J. & Rodriguez, J.A. 2012. Processing and characteristic of porous titanium for implants by using NaCl as space holder. Journal of Material Processing 212: 1061-1069.

Weil, K.S., Nyberg, E. & Simmons, K. 2006. A new binder for powder injection molding and other reactive metals. Journal of Material Processing Technology 176: 205-209.

Wen, C.E., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y. & Asahina, T. 2001. Processing of biocompatible of Ti and Mg. Scr. Mater. 45(10): 1147-1153.

 

 

*Pengarang untuk surat-menyurat; email: abubakar@ukm.edu.my

 

 

 

 

 

 

 

 

sebelumnya