Sains Malaysiana 46(9)(2017): 1651–1657
http://dx.doi.org/10.17576/jsm-2017-4609-38
Effect of Space Holders on Fabrication of Porous Titanium Alloy-Hydroxyapatite
Composite through Powder Injection Molding
(Kesan Pemegang Ruang terhadap Pembentukan Komposit Aloi Titanium-Hidroksiapatit
Berbusa melalui Pengacuan Suntikan Serbuk)
FARRAHSHAIDA
MOHD
SALLEH1,
ABU
BAKAR
SULONG1*,
MUHAMMAD
RAFI
RAZA3,
NORHAMIDI
MUHAMAD1
& LIM TSIU FHANG1
1Department of Mechanical
and Materials Engineering, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor
Darul Ehsan, Malaysia
2Faculty of Mechanical
Engineering, Universiti Teknologi MARA, 40450 UiTM Shah Alam,
Selangor Darul Ehsan, Malaysia
3Department of Mechanical
Engineering, COMSATS Institute of Information Technology, Sahiwal,
Pakistan
Diserahkan: 28 April
2016/Diterima: 31 Mei 2017
ABSTRACT
Powder injection molding
(PIM) is able to produce porous titanium alloy/hydroxyapatite
composite through the space holder technique. Thermal debinding
and sintering processes were the main challenges due to different
properties of metal and ceramic in producing such composite.
This study focused on the effect of different space holders
on the physical and mechanical properties of debound and sintered
porous titanium aloi/hydroxyapatite composite. The feedstock
is containing of 80 wt. % of titanium alloy/hydroxyapatite with
20 wt. % of space holders such as sodium chloride (NaCl) and
polymethylmethacrylate (PMMA), respectively. The binders
were then removed from the injected samples by two stages of
debinding; solvent and thermal debinding. The sintering was
performed at three different temperatures 1100oC, 1200oC and 1300oC
at a heating rate of 10oC /min and holding time
of 5 h. It was found that the samples containing PMMA space
holder was fractured after sintering. While, the samples containing
NaCl space holder successfully formed pores and not fractured.
At sintering temperature of 1300oC, the density, compressive strength and porosity volume
percentages for the sintered sample containing NaCl space holder
were 3.05 g/cm3,
91.7 MPa. and 11.9 vol%, respectively.
Keywords: Hydroxyapatite;
metal foam; powder injection molding; space holder; titanium
alloy
ABSTRAK
Pengacuan suntikan serbuk
(PIM) boleh menghasilkan komposit aloi titanium/hidroksiapatit
berbusa dengan menggunakan teknik pemegang ruang. Proses bagi
penyahikatan dan persinteran merupakan cabaran utama disebabkan
sifat bahan logam dan seramik yang berbeza dalam penghasilan
komposit tersebut. Fokus kajian ini adalah kesan berbeza pemegang
ruang terhadap sifat fizikal dan mekanik penyahikatan serta
persinteran komposit aloi titanium-hidroksiapatit berbusa. Bahan
suapan mengandungi 80 % bt. aloi titanium/hidroksiapatit dengan
20 % bt. pemegang ruang seperti sodium klorida (NaCl) dan polimetilmetakrilat
(PMMA).
Bahan pengikat kemudian disingkirkan daripada sampel yang disuntik
melalui dua peringkat penyahikatan; larutan dan penyahikatan
terma. Persinteran dijalankan pada tiga suhu yang berbeza 1100oC, 1200oC
dan 1300oC pada kadar pemanasan sebanyak 10oC
/min dan masa pegangan selama 5 jam. Didapati sampel yang mengandungi
pemegang ruang PMMA
hancur selepas persinteran. Manakala, sampel yang
mengandungi pemegang ruang NaCl berjaya menghasilkan liang-liang
berbusa dan tidak hancur. Pada suhu persinteran 1300oC, ketumpatan, kekuatan
mampatan dan peratusan isi padu keliangan sebanyak 3.05 g/cm3, 91.7
MPa. dan 11.9 vol%.
Kata kunci: Aloi Titanium;
hidroksiapatit; logam berbusa; pemegang ruang; pengacuan suntikan
serbuk
RUJUKAN
Ahmad, S., Muhamad, N., Muchtar, A., Sahari, J., Jamaludin, K.R.,
Ibrahim, M.H.I., Mohamad Nor, N.H. & Murtadhahadi. 2010.
Characterisation of titanium foams sintered at different temperatures
prepared by the slurry method. Sains Malaysiana 39(1):
77-82.
Arawi, A.Z.O., Ramli, R. & Talari, M.K. 2012. Study of sintering
temperature for nano-hydroxyapatite with addition of titanium.
Advanced Materials Research 538-541: 2392-2395.
Arifin, A., Sulong, A.B., Muhamad, N., Syarif, J. & Ramli, M.I.
2015. Powder injection molding of HA/Ti6Al4V composite using
palm stearin as based binder for implant material. Material
and Design 65: 1028-1034.
Arifin, A. 2015. Pengacuanan suntikan serbuk hidroksiapatit/ Ti6Al4V
komposit menggunakan pengikat berasaskan stearin sawit, PhD
Tesis, Universiti Kebangsaan Malaysia (Unpublished).
Best, S.M., Porter, A.E., Thian, E.S. & Huang, J. 2008. Bioceramics:
Past, present and the future. Journal of the European Ceramic
Society 28: 1319-1327.
Bram, M., Ahmad-Khanlou, A., Heckmann, A., Fuchs, B., Buchkremer,
H. & Stöver, D. 2002. Powder metallurgical fabrication processes
for NiTi shape memory alloy parts. Mater. Sci. Eng. A Struct.
337: 254-263.
Chu, C., Xue, X., Zhu, J. & Yin, Z. 2006. Fabrication and characterization
of titanium-matrix composite with 20 vol% hydroxyapatite for
use as heavy load-bearing hard tissue replacement. J. Mater.
Sci-Mater. Med. 17: 245-251.
Deing, A., Luthringer, B., Laipple, D., Ebel, T. & Willumeit,
R. 2014. A porous TiAl6V4 implant material for medical application.
International Journal of Biomaterials 2014: Article ID.
904230.
Engin, G., Bülent, A. & Gülsoy, H.Ö. 2011. Injection molding
of micro-porous titanium alloy with space holder technique.
Rare Metals 30(6): 565-571.
Enneti, R.K., Park, S.J., German, R.M. & Atre, S.V. 2012. Review:
Thermal debinding process in particulate materials processing.
Materials and Manufacturing Processes 27: 103-118.
German, R.M. 1996. Sintering
Theory and Practice. 1st ed. Canada: John Wiley & Son
Inc.
Ibrahim, M.H.I., Muhamad,
N. & Sulong, A.B. 2009. Rheological investigation of water
atomised stainless steel. International Journal of Mechanical
and Materials Engineering 4: 1-8.
Jha, N., Mondal, D.P.,
Dutta Majumdar, J., Badkul, A., Jha, A.K. & Khare, A.K.
2013. Highly porous open cell Ti-foam using NaCl as temporary
space holder through powder metallurgy route. Materials and
Design 47: 810-819.
Ji, C.H., Loh, N.H.,
Khor, K.A. & Tor, S.B. 2001. Sintering study of 316L stainless
steel metal injection molding parts using Taguchi method: Final
density. Materials Science and Engineering A 311: 74-82.
Jurcyzk, M. 2012. Bionanomaterials
for Dental Applications. New York: Taylor & Francis.
Köhl, M., Bram, M., Buchkremer,
P., Stöver, D., Habijan, T. & Köller, M. 2008. In Proceedings
of the Fifth International Conference on Porous Metals and Metallic
Foams, edited by Lefeb-vre, P., Banhart, J. & Dunand,
D.C. Destech Publications Inc. pp. 295-298.
Manonukul, A., Muenya,
N., Leaux, F. & Amaranan, S. 2010. Effects of replacing
metal powder space holder on metal foam produced by metal injection
moulding. Journal of Materials Processing Technology 210:
529-535.
Murray, N.G.D. &
Dunand, D.C. 2003. Microstructure evolution during solid-state
foaming of titanium. Composite Science Technology 63:
2311-2316.
Nishiyabu, K., Matsuzaki,
S., Okubo, K., Ishida, M. & Tanaka, S. 2005. Porous graded
materials by stacked metal powder hot-press moulding. Materials
Science Forum 492-493: 765-770.
Nomura, N., Sakamoto,
K. & Takahashi, K. 2010. Fabrication and mechanical properties
of porous Ti/HA for bone fixation devices. Materials Transactions
51(8): 1449-1454.
Oh, I.H., Nomura, N.,
Masahashi, N. & Hanada, S. 2003. Mechanical properties of
porous titanium compacts prepared by powder sintering. Scripta
Materialia 49: 1197-1202.
Omar, M.A. & Davies,
H.A. 2001. The influence of PMMA content on the properties of
316L stainless steel MIM compact. J. of Materials Processing
Technology 113: 471- 481.
Pachauri, P. & Hamiuddin,
M. 2016. Optimization of debinding process in metal injection
molding (MIM) for high density of sintered part. Int. J.
Adv. Mater Metallurgical Eng. 2(1): 12-22.
Patnaik, P. 2003. Handbook
of Inorganic Chemicals. New York: McGraw-Hill.
Pattanayak, D., Rao,
B.T. & Mohan, T.R.R. 2011. Calcium phosphate bioceramics
and bioceramic composites. J. Sol-Gel Sci. Technol. 59:
432-447.
Raza, M.R., Sulong, A.B.,
Muhamad, N., Majid, N.A. & Rajabi, J. 2015. Effects of binder
system and processing parameters on formability of porous Ti-6Al-4V/HA
composite through powder injection moulding. Material &
Design 87: 386-392.
Raza, M.R., Sulong, A.B.,
Muhamad, N., Majid, N.A., Rajabi, J. & Amir, A. 2014. Optimization
of binder and process parameters to produce Ti/HA foam through
micro powder injection molding. Advanced Material Conference
(AMC) 32: 307-312.
Thian, E.S., Loh, N.H.,
Khor, K.A. & Tor, S.B. 2002. Ti-6Al-4V/ HA composite feedstock
for injection molding. Materials Letters 56: 522-532.
Thian, E.S., Loh, N.H.,
Khor, K.A. & Tor, S.B. 2001. Effects of debinding parameters
on powder injection molded Ti- 6Al-4V/HA composite parts. Advances
Powder Technology 12(3): 361-370.
Torres, Y., Pavon, J.J.
& Rodriguez, J.A. 2012. Processing and characteristic of
porous titanium for implants by using NaCl as space holder.
Journal of Material Processing 212: 1061-1069.
Weil, K.S., Nyberg, E.
& Simmons, K. 2006. A new binder for powder injection molding
and other reactive metals. Journal of Material Processing
Technology 176: 205-209.
Wen, C.E., Mabuchi, M.,
Yamada, Y., Shimojima, K., Chino, Y. & Asahina, T. 2001.
Processing of biocompatible of Ti and Mg. Scr. Mater.
45(10): 1147-1153.
*Pengarang
untuk surat-menyurat; email: abubakar@ukm.edu.my