Sains Malaysiana 46(9)(2017): 1641–1650
http://dx.doi.org/10.17576/jsm-2017-4609-37
An
Overview of the Present Stability and Performance of EOR-Foam
(Gambaran Keseluruhan Kestabilan Semasa dan Prestasi
EOR-Buih)
MOHAMMED
FALALU
HAMZA,
CHANDRA
MOHAN
SINNATHAMBI*,
ZULKIFLI
MERICAN
ALJUNID
MERICAN,
HASSAN
SOLEIMANI
& STEPHEN KARL D.
1Center of Research in
Enhanced Oil Recovery (COREOR), Universiti Teknologi Petronas
32610 Bandar Seri Iskandar,
Perak Darul Ridzuan, Malaysia
2Fundamental and Applied
Sciences Department, Universiti Teknologi Petronas
32610 Bandar Seri Iskandar,
Perak Darul Ridzuan, Malaysia
Diserahkan: 17 Januari
2017/Diterima: 8 April 2017
ABSTRACT
Foam
flooding technique, commonly known as foam assisted water alternating
gas method (FAWAG) has been identified as an effective chemical enhanced
oil recovery (CEOR) technique. The ability of EOR-foam
to sweep oil in low permeable zones makes it important displacement
fluid in the oil industry. However, extreme reservoir conditions
such as temperature, pressure and salinity have detrimental
effects on the stability and the overall performance of the
EOR-foam. Consequently, understanding
foam stability and performance under different conditions is
crucial for long term oil field application. This paper discusses
the current status of the EOR-foam
stability, performance and challenges from laboratory studies
to field application perspective. The paper also highlights
the knowledge gaps which require further research for successful
field application.
Keywords:
EOR-foam;
foam application; foams performance; foam stability
ABSTRAK
Teknik
banjir buih, biasanya dikenali sebagai kaedah air berselang-seli
gas berbantu buih (FAWAG) telah dikenal pasti sebagai satu teknik pemulihan
(CEOR)
minyak tertingkat kimia yang berkesan. Keupayaan EOR-buih
untuk menyapu minyak di zon rendah boleh telap menjadikan ia
cecair anjakan penting dalam industri minyak. Walau bagaimanapun,
keadaan melampau takungan seperti suhu, tekanan dan kemasinan
mempunyai kesan yang memudaratkan terhadap kestabilan dan prestasi
keseluruhan EOR-buih itu. Oleh yang demikian,
kefahaman tentang kestabilan buih dan prestasi di bawah keadaan
yang berbeza adalah penting untuk jangka masa panjang bidang
aplikasi minyak. Kertas ini membincangkan status semasa kestabilan
EOR-buih,
prestasi serta cabaran daripada ujian makmal bidang kepada perspektif
aplikasi lapangan. Kertas ini juga menyerlahkan jurang pengetahuan
yang memerlukan kajian lanjut untuk aplikasi lapangan ini berjaya.
Kata kunci: Aplikasi buih; EOR-buih; kestabilan buih; prestasi
buih
RUJUKAN
Aghdam,
K.A., Moghaddas, J. & Moradi, B. 2013. An investigation
of the effect of using foam in WAG injection in an Iranian oil
reservoir. Petroleum Science and Technology 31(21): 2228-2236.
Ahmadi,
M.A. & Sheng, J. 2016. Performance improvement of ionic
surfactant flooding in carbonate rock samples by use of nanoparticles.
Petroleum Science 13(4): 725-736.
Ahmadi,
M.A. & Shadizadeh, S.R. 2013. Induced effect of adding nano
silica on adsorption of a natural surfactant onto sandstone
rock: Experimental and theoretical study. Journal of Petroleum
Science and Engineering 112: 239-247.
Ahmadi,
Y., Eshraghi, S.E., Bahrami, P., Hasanbeygi, M., Kazemzadeh,
Y. & Vahedian, A. 2015. Comprehensive Water-Alternating-Gas
(WAG) injection study to evaluate the most effective method
based on heavy oil recovery and asphaltene precipitation tests.
Journal of Petroleum Science and Engineering 133: 123-129.
Al-Hadhrami,
H.S. & Blunt, M.J. 2000. Thermally induced wettability alteration
to improve oil recovery in fractured reservoirs. SPE/DOE
Improved Oil Recovery Symposium. Society of Petroleum Engineers.
pp. 1-9.
Alvarado,
V. & Manrique, E. 2010. Enhanced oil recovery: An update
review. Energies 3(9): 1529-1575.
Buchgraber,
M., Castanier, L.M. & Kovscek, A.R. 2012. Microvisual investigation
of foam flow in ideal fractures: Role of fracture aperture and
surface roughness. SPE Annual Technical Conference and Exhibition.
Society of Petroleum Engineers.
Batôt,
G., Fleury, M. & Nabzar, L. 2016. Study of CO2 foam
performance in a CCS context. The 30th International Symposium
of the Society of Core Analysts-Snowmass.
Casteel,
J.F. & Djabbarah, N.F. 1988. Sweep improvement in CO2 flooding
by use of foaming agents. SPE Res. Eng. 3(4): 1186-1192.
Chen,
M., Yortsos, Y.C. & Rossen, W.R. 2004. A pore-network study
of the mechanisms of foam generation. SPE Annual Technical
Conference and Exhibition. Society of Petroleum Engineers.
Denkov,
J.N.D., Marinova, K.G. & Tcholakova, S.S. 2014. Mechanistic
understanding of the modes of action of foam control agents.
Adv. Colloid Interface Sci. 206: 57-67.
Derikvand,
Z. & Riazi, M. 2016. Experimental investigation of a novel
foam formulation to improve foam quality. Journal of Molecular
Liquids 224(Part B): 1311-1318.
Etminan,
S.R., Goldman, J. & Wassmuth, F. 2016. Determination of
optimal conditions for addition of foam to steam for conformance
control. In SPE EOR Conference at Oil and Gas West Asia.
Society of Petroleum Engineers.
Farzaneh,
S.A. & Sohrabi, M. 2013. A review of the status of foam
application in enhanced oil recovery. EAGE Annual Conference
& Exhibition incorporating SPE Europec. Society of Petroleum
Engineers.
Fathi, Z. & Ramirez,
W.F. 1984. Optimal injection policies for enhanced oil recovery:
Part 2 - surfactant flooding. SPE paper 12814. SPE Journal
24(3): 331-341.
Ferno, M.A., Gauteplass,
J., Pancharoen, M., Haugen, Å., Graue, A., Kovscek, A.R. &
Hirasaki, G. 2016. Experimental study of foam generation, sweep
efficiency, and flow in a fracture network. SPE Journal 21(4).
DOI. https://doi. org/10.2118/170840-PA.
Gauteplass, J., Chaudhary,
K., Kovscek, A.R. & Fernø, M.A. 2015. Pore-level foam generation
and flow for mobility control in fractured systems. Colloids
and Surfaces A: Physicochemical and Engineering Aspects 468:
184-192.
Géraud, B., Méheust,
Y., Cantat, I. & Dollet, B. 2017. Lamella division in a
foam flowing through a two-dimensional porous medium: A model
fragmentation process. Physical Review Letters 118(9):
098003.
Géraud, B., Jones, S.A.,
Cantat, I., Dollet, B. & Méheust, Y. 2016. The flow of a
foam in a two‐dimensional porous medium. Water
Resources Research 52(2): 773-790.
Getrouw, N.A.S. 2016.
The static and dynamic behaviour of foam in a model porous media.
Master of Science. Applied Earth Sciences at the Delft University
of Technology. pp.16-106 (Unpublished).
Guo, F. & Aryana,
S. 2016. An experimental investigation of nanoparticle-stabilized
CO2 foam used in enhanced oil recovery. Fuel 186: 430-442.
Hamza, M.F., Sinnathambi,
C.M. & Merican, Z.A. 2016. Recent advancement of hybrid
materials used in chemical enhanced oil recovery. 29th Symposium
of Malaysian Chemical Engineering Conference, Miri, Sarawak,
Malaysia.
Hesemann, P., Nguyen,
T.P. & Hankari, S.E. 2014. Precursor mediated synthesis
of nanostructured silicas: From precursor-surfactant ion pairs
to structured materials. Materials 7(4): 2978-3001.
Hou, J., Zhang, Y.H.,
Lu, N., Yao, C.J. & Lei, G.L. 2016. A new method for evaluating
the injection effect of chemical flooding. Petroleum Science
13: 496-506.
Hou, Q., Zhu, Y., Luo,
Y. & Weng, R. 2012. Studies on foam flooding EOR technique
for daqing reservoirs after polymer flooding. In SPE Improved
Oil Recovery Symposium. Society of Petroleum Engineers.
Jones, S.A., van der
Bent, V., Farajzadeh, R., Rossen, W.R. & Vincent-Bonnieu,
S. 2016. Surfactant screening for foam EOR: Correlation between
bulk and core flood experiments. Colloids and Surfaces A:
Physicochemical and Engineering Aspects 500: 166-176.
Kalyanaraman, N., Arnold,
C., Gupta, A., Tsau, J.S. & Ghahfarokhi, R.B. 2017. Stability
improvement of CO2 foam for enhanced oil‐recovery applications
using polyelectrolytes and polyelectrolyte complex nanoparticles.
Journal of Applied Polymer Science 134(6). DOI: 10.1002/app.44491.
Kapetas, L., Bonnieu,
S.V., Danelis, S., Rossen, W.R., Farajzadeh, R., Eftekhari,
A.A. & Bahrim, R.K. 2016. Effect of temperature on foam
flow in porous media. Journal of Industrial and Engineering
Chemistry 36: 229-237.
Kovscek, A.R. & Bertin,
H.J. 2003. Foam mobility in heterogeneous porous media II: Experimental
observations. Transport in Porous Media 52(1): 37-49.
Lalehrokh, F., Bryant,
S.L., Huh, C. & Sharma, M.M. 2008. Application of pH-triggered
polymers in fractured reservoirs to increase sweep efficiency.
SPE Symposium on Improved Oil Recovery. Society of Petroleum
Engineers. pp. 1-8.
Levitt, D., Jackson,
A., Heinson, C., Britton, L.N., Malik, T., Dwarakanath, V. &
Pope, G.A. 2006. Identification and evaluation of high-performance
EOR surfactants. SPE/DOE Symposium on Improved Oil Recovery.
Society of Petroleum Engineers. pp. 1-11.
Li, Z.Q., Song, X.W.,
Wang, Q.W., Zhang, L., Guo, P. & Li, X.L. 2009. Enhanced
foam flooding pilot test in chengdong of shengli oilfield: Laboratory
experiment and field performance. International Petroleum
Technology Conference. DOI: https://doi.org/10.2523/IPTC-13575-MS.
Llave, F.M., Chung, F.H.,
Louvier, R.W. & Hudgins, D.A. 1990. Foams as mobility control
agents for oil recovery by gas displacement. SPE/DOE Enhanced
Oil Recovery Symposium. Society of Petroleum Engineers.
pp. 1-14.
Memon, M.K., Shuker,
M.T. & Elraies, K.A. 2016. Study of blended surfactants
to generate stable foam in presence of crude oil for gas mobility
control. Journal of Petroleum Exploration and Production
Technology 7(1): 77-85.
Meybodi, H.E., Kharrat,
R. & Wang, X. 2011. Study of microscopic and macroscopic
displacement behaviors of polymer solution in water-wet and
oil-wet media. Transport in Porous Media 89(1): 97-120.
Montoya, T., Argel, B.L.,
Nassar, N.N., Franco, C.A. & Cortés, F.B. 2016. Kinetics
and mechanisms of the catalytic thermal cracking of asphaltenes
adsorbed on supported nanoparticles. Petroleum Science 13(3):
561-571.
Morin, B., Liu, Y., Alvarado,
V. & Oakey, J. 2016. A microfluidic flow focusing platform
to screen the evolution of crude oil-brine interfacial elasticity.
Lab on a Chip 16(16): 3074-3081.
Murata, S., Ashida, A.,
Okabe, H., Fukahori, D. & Ishida, T. 2010. Sweep efficiency
improvement by blocking already swept high permeable zones in
reservoir with biodegradable polymer gel. The IEA EOR 2010
31st Annual Workshop and Symposium, Aberdeen, Scotland,
October 18-20.
Nagy, R., Sallai, R.,
Bartha, L., & Vágó, Á. 2015. Selection method of surfactants
for chemical enhanced oil recovery. Advances in Chemical
Engineering and Science 5: 121-128.
Nangacovié, H.L.M. 2012.
Application of WAG and SWAG Injection Techniques in Norne
E-Segment. Department of Petroleum Engineering and Applied
Geophysics, Norwegian University of Science and Technology.
p. 91.
Nezhad, E.H., Ghorbani,
M., Zeinalkhani, M. & Heidari, A. 2013. DNA encapsulation
in an anionic reverse micellar solution of dioctyl sodium sulfosuccinate.
Physical Chemistry 3(1): 7-10.
Nguyen, Q.P., Currie,
P.K. & Zitha, P.L.J. 2005. Effect of crossflowon foam-induced
diversion in layered formations. SPE J. 10(1): 54-65.
Osei-Bonsu, K., Shokri,
N. & Grassia, P. 2016. Fundamental investigation of foam
flow in a liquid-filled Hele-Shaw cell. Journal of Colloid
and Interface Science 462: 288-296.
Pu, W., Wei, P., Sun,
L. & Wang, S. 2017. Stability, CO2 sensitivity,
oil tolerance and displacement efficiency of polymer enhanced
foam. RSC Advances 7(11): 6251-6258.
Ransohoff, T.C. &
Radke, C.J. 1988. Mechanisms of foam generation in glass-bead
packs. Journal of Reservoir Engineering of Society of Petroleum
Engineers 3: 573-585. http://dx.doi.org/10.2118/15441-pa.
Sakthipriya,
N., Doble, M. & Sangwai, J.S. 2015. Enhanced oil recovery
techniques for Indian reservoirs, In Petroleum Geosciences:
Indian Contexts, edited by Mukherjee, S. Springer Geology.
Springer, Cham. pp. 237-269.
Salehi, M.M., Safarzadeh,
M.A., Sahraei, E. & Nejad, S.A.T. 2014. Comparison of oil
removal in surfactant alternating gas with water alternating
gas, water flooding and gas flooding in secondary oil recovery
process. Journal of Petroleum Science and Engineering 120:
86-93.
Schramm, L.L. 2000. Surfactants:
Fundamentals and Applications in the Petroleum Industry.
Cambrige: Cambridge University Press.
Schramm, L.L. & Novosad,
J.J. 1990. Micro-visualization of foam interaction with a crude
oil. Colloids Surf. 46(1): 21-43.
Shabib-Asl, A., Ayoub,
M.A., Alta’ee, A.F., Saaid, I.B.M. & Valentim, P.P.J. 2014.
Comprehensive review of foam application during foam assisted
water alternating gas (FAWAG) method. Research Journal of
Applied Sciences, Engineering and Technology 8(17): 1896-1904.
Shedid, S.A. 2015. Experimental
investigation of alkaline/ surfactant/polymer (ASP) flooding
in low permeability heterogeneous carbonate reservoirs. SPE
North Africa Technical Conference and Exhibition. Society
of Petroleum Engineers. pp. 1-16.
Sheng, J. 2013. Enhanced
Oil Recovery Field Case Studies. Gulf Professional Publishing.
Simjoo, M., Rezaei, T.,
Andrianov, A. & Zitha, P.L.J. 2013. Foam stability in the
presence of oil: Effect of surfactant concentration and oil
type. Colloids and Surf. A: Physicochem. and Eng. Asp. 438:
148-158.
Sun, L., Pu, W., Xin,
J., Wei, P., Wang, B., Li, Y. & Yuan, C. 2015. High temperature
and oil tolerance of surfactant foam/ polymer-surfactant foam.
RSC Advances 5(30): 23410-23418.
Sun, Q., Li, Z., Wang,
J., Li, S., Jiang, L. & Zhang, C. 2015. Properties of multi-phase
foam and its flow behavior in porous media. RSC Advances
5(83): 67676-67689.
Talebian, S.H., Tan,
I.M., Sagir, M. & Muhammad, M. 2015. Static and dynamic
foam/oil interactions: Potential of CO2- philic surfactants
as mobility control agents. Journal of Petroleum Science
and Engineering 135: 118-126.
Touray, S. 2013. Effect
of water alternating gas injection on ultimate oil recovery.
Master of Engineering. Dalhousie University. p. 25 (Unpublished).
Tunio, S.Q., Chandio,
T.A. & Memon, M.K. 2012. Comparative study of FAWAG and
SWAG as an effective EOR technique for a Malaysian field. Research
Journal of Applied Sciences, Engineering and Technology 4(6):
645-648.
Tunio, S.Q., Tunio, A.H.,
Ghirano, N.A. & El-Adawy, Z.M. 2011. Comparison of different
enhanced oil recovery techniques for better oil productivity.
International Journal of Applied Science and Technology 1(5):
143-153.
Tyrode, E., Pizzino,
A. & Rojas, O.J. 2003. Foamability and foam stability at
high pressures and temperatures. I. Instrument validation. Review
of Scientific Instruments 74(5): 2925-2932.
Tzimas, E., Georgakaki,
A., Cortes, C.G. & Peteves, S.D. 2005. Enhanced oil recovery
using carbon dioxide in the European energy system. EUR -
Scientific and Technical Research Reports 21895(6).
Vasshus, S.S. 2016. Experimental
study of foam generation and flow in carbonate fracture systems.
Master Thesis. University of Bergen (Unpublished).
Verma, M.K. 2015. Fundamentals
of carbon dioxide-enhanced oil recovery (CO2-EOR). A supporting
document of the assessment methodology for hydrocarbon recovery
using CO2-EOR associated with carbon sequestration: U.S. Geological
Survey Open-File Report 2015-1071,19. http:// dx.doi.org/10.3133/ofr20151071.
Wang, Y., Ge, J., Zhang,
W., Zhang, G., Lin, Y. & Song, K. 2016. Surface property
and enhanced oil recovery study of foam aqueous dispersions
comprised of surfactants-organic acids-nanoparticles. RSC
Advances 6(114): 113478-113486.
Worthen, A.J., Parikh,
P.S., Chen, Y., Bryant, S.L., Huh, C. & Johnston, K.P. 2014.
Carbon dioxide-in-water foams stabilized with a mixture of nanoparticles
and surfactant for CO2 storage and utilization applications.
Energy Procedia 63: 7929-7938.
Xue, Z., Worthen, A.,
Qajar, A., Robert, I., Bryant, S.L., Huh, C. & Johnston,
K.P. 2016. Viscosity and stability of ultra-high internal phase
CO2-in-water foams stabilized with surfactants and nanoparticles
with or without polyelectrolytes. Journal of Colloid and
Interface Science 461: 383-395.
Zeng, Y., Muthuswamy,
A., Ma, K., Wang, L., Farajzadeh, R., Puerto, M., Vincent-Bonnieu,
S., Akbar Eftekhari, A., Wang, Y., Da, C., Joyce, J.C., Biswal,
S.L. & Hirasaki, G.J. 2016. Insights on foam transport from
a texture-implicit local-equilibrium model with an improved
parameter estimation algorithm. Industrial & Engineering
Chemistry Research 55(28): 7819-7829.
Zerhboub, M., Touboul,
E., Ben-Naceur, K. & Thomas, R.L. 1994. Matrix acidizing:
A novel approach to foam diversion. SPE Production &
Facilities 9(2): 121-126.
Zhao, G., Dai, C., Zhang,
Y., Chen, A., Yan, Z. & Zhao, M. 2015. Enhanced foam stability
by adding comb polymer gel for in-depth profile control in high
temperature reservoirs. Colloids and Surfaces A: Physicochemical
and Engineering Aspects 482: 115-124.
Zhu, D., Zhang, J., Han,
Y., Wang, H. & Feng, Y. 2013. Laboratory study on the potential
EOR use of HPAM/VES hybrid in high-temperature and high-salinity
oil reservoirs. Journal of Chemistry 2013: Article ID.
927519.
*Pengarang untuk surat-menyurat;
email: chandram1457@gmail.com