Sains Malaysiana 46(9)(2017): 1641–1650

http://dx.doi.org/10.17576/jsm-2017-4609-37

 

An Overview of the Present Stability and Performance of EOR-Foam

(Gambaran Keseluruhan Kestabilan Semasa dan Prestasi EOR-Buih)

 

MOHAMMED FALALU HAMZA, CHANDRA MOHAN SINNATHAMBI*, ZULKIFLI MERICAN ALJUNID MERICAN, HASSAN SOLEIMANI & STEPHEN KARL D.

 

1Center of Research in Enhanced Oil Recovery (COREOR), Universiti Teknologi Petronas

32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

2Fundamental and Applied Sciences Department, Universiti Teknologi Petronas

32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

Diserahkan: 17 Januari 2017/Diterima: 8 April 2017

 

ABSTRACT

Foam flooding technique, commonly known as foam assisted water alternating gas method (FAWAG) has been identified as an effective chemical enhanced oil recovery (CEOR) technique. The ability of EOR-foam to sweep oil in low permeable zones makes it important displacement fluid in the oil industry. However, extreme reservoir conditions such as temperature, pressure and salinity have detrimental effects on the stability and the overall performance of the EOR-foam. Consequently, understanding foam stability and performance under different conditions is crucial for long term oil field application. This paper discusses the current status of the EOR-foam stability, performance and challenges from laboratory studies to field application perspective. The paper also highlights the knowledge gaps which require further research for successful field application.

 

Keywords: EOR-foam; foam application; foams performance; foam stability

 

ABSTRAK

Teknik banjir buih, biasanya dikenali sebagai kaedah air berselang-seli gas berbantu buih (FAWAG) telah dikenal pasti sebagai satu teknik pemulihan (CEOR) minyak tertingkat kimia yang berkesan. Keupayaan EOR-buih untuk menyapu minyak di zon rendah boleh telap menjadikan ia cecair anjakan penting dalam industri minyak. Walau bagaimanapun, keadaan melampau takungan seperti suhu, tekanan dan kemasinan mempunyai kesan yang memudaratkan terhadap kestabilan dan prestasi keseluruhan EOR-buih itu. Oleh yang demikian, kefahaman tentang kestabilan buih dan prestasi di bawah keadaan yang berbeza adalah penting untuk jangka masa panjang bidang aplikasi minyak. Kertas ini membincangkan status semasa kestabilan EOR-buih, prestasi serta cabaran daripada ujian makmal bidang kepada perspektif aplikasi lapangan. Kertas ini juga menyerlahkan jurang pengetahuan yang memerlukan kajian lanjut untuk aplikasi lapangan ini berjaya.

 

Kata kunci: Aplikasi buih; EOR-buih; kestabilan buih; prestasi buih

 

RUJUKAN

 

Aghdam, K.A., Moghaddas, J. & Moradi, B. 2013. An investigation of the effect of using foam in WAG injection in an Iranian oil reservoir. Petroleum Science and Technology 31(21): 2228-2236.

Ahmadi, M.A. & Sheng, J. 2016. Performance improvement of ionic surfactant flooding in carbonate rock samples by use of nanoparticles. Petroleum Science 13(4): 725-736.

Ahmadi, M.A. & Shadizadeh, S.R. 2013. Induced effect of adding nano silica on adsorption of a natural surfactant onto sandstone rock: Experimental and theoretical study. Journal of Petroleum Science and Engineering 112: 239-247.

Ahmadi, Y., Eshraghi, S.E., Bahrami, P., Hasanbeygi, M., Kazemzadeh, Y. & Vahedian, A. 2015. Comprehensive Water-Alternating-Gas (WAG) injection study to evaluate the most effective method based on heavy oil recovery and asphaltene precipitation tests. Journal of Petroleum Science and Engineering 133: 123-129.

Al-Hadhrami, H.S. & Blunt, M.J. 2000. Thermally induced wettability alteration to improve oil recovery in fractured reservoirs. SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers. pp. 1-9.

Alvarado, V. & Manrique, E. 2010. Enhanced oil recovery: An update review. Energies 3(9): 1529-1575.

Buchgraber, M., Castanier, L.M. & Kovscek, A.R. 2012. Microvisual investigation of foam flow in ideal fractures: Role of fracture aperture and surface roughness. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

Batôt, G., Fleury, M. & Nabzar, L. 2016. Study of CO2 foam performance in a CCS context. The 30th International Symposium of the Society of Core Analysts-Snowmass.

Casteel, J.F. & Djabbarah, N.F. 1988. Sweep improvement in CO2 flooding by use of foaming agents. SPE Res. Eng. 3(4): 1186-1192.

Chen, M., Yortsos, Y.C. & Rossen, W.R. 2004. A pore-network study of the mechanisms of foam generation. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

Denkov, J.N.D., Marinova, K.G. & Tcholakova, S.S. 2014. Mechanistic understanding of the modes of action of foam control agents. Adv. Colloid Interface Sci. 206: 57-67.

Derikvand, Z. & Riazi, M. 2016. Experimental investigation of a novel foam formulation to improve foam quality. Journal of Molecular Liquids 224(Part B): 1311-1318.

Etminan, S.R., Goldman, J. & Wassmuth, F. 2016. Determination of optimal conditions for addition of foam to steam for conformance control. In SPE EOR Conference at Oil and Gas West Asia. Society of Petroleum Engineers.

Farzaneh, S.A. & Sohrabi, M. 2013. A review of the status of foam application in enhanced oil recovery. EAGE Annual Conference & Exhibition incorporating SPE Europec. Society of Petroleum Engineers.

Fathi, Z. & Ramirez, W.F. 1984. Optimal injection policies for enhanced oil recovery: Part 2 - surfactant flooding. SPE paper 12814. SPE Journal 24(3): 331-341.

Ferno, M.A., Gauteplass, J., Pancharoen, M., Haugen, Å., Graue, A., Kovscek, A.R. & Hirasaki, G. 2016. Experimental study of foam generation, sweep efficiency, and flow in a fracture network. SPE Journal 21(4). DOI. https://doi. org/10.2118/170840-PA.

Gauteplass, J., Chaudhary, K., Kovscek, A.R. & Fernø, M.A. 2015. Pore-level foam generation and flow for mobility control in fractured systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects 468: 184-192.

Géraud, B., Méheust, Y., Cantat, I. & Dollet, B. 2017. Lamella division in a foam flowing through a two-dimensional porous medium: A model fragmentation process. Physical Review Letters 118(9): 098003.

Géraud, B., Jones, S.A., Cantat, I., Dollet, B. & Méheust, Y. 2016. The flow of a foam in a twodimensional porous medium. Water Resources Research 52(2): 773-790.

Getrouw, N.A.S. 2016. The static and dynamic behaviour of foam in a model porous media. Master of Science. Applied Earth Sciences at the Delft University of Technology. pp.16-106 (Unpublished).

Guo, F. & Aryana, S. 2016. An experimental investigation of nanoparticle-stabilized CO2 foam used in enhanced oil recovery. Fuel 186: 430-442.

Hamza, M.F., Sinnathambi, C.M. & Merican, Z.A. 2016. Recent advancement of hybrid materials used in chemical enhanced oil recovery. 29th Symposium of Malaysian Chemical Engineering Conference, Miri, Sarawak, Malaysia.

Hesemann, P., Nguyen, T.P. & Hankari, S.E. 2014. Precursor mediated synthesis of nanostructured silicas: From precursor-surfactant ion pairs to structured materials. Materials 7(4): 2978-3001.

Hou, J., Zhang, Y.H., Lu, N., Yao, C.J. & Lei, G.L. 2016. A new method for evaluating the injection effect of chemical flooding. Petroleum Science 13: 496-506.

Hou, Q., Zhu, Y., Luo, Y. & Weng, R. 2012. Studies on foam flooding EOR technique for daqing reservoirs after polymer flooding. In SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers.

Jones, S.A., van der Bent, V., Farajzadeh, R., Rossen, W.R. & Vincent-Bonnieu, S. 2016. Surfactant screening for foam EOR: Correlation between bulk and core flood experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects 500: 166-176.

Kalyanaraman, N., Arnold, C., Gupta, A., Tsau, J.S. & Ghahfarokhi, R.B. 2017. Stability improvement of CO2 foam for enhanced oilrecovery applications using polyelectrolytes and polyelectrolyte complex nanoparticles. Journal of Applied Polymer Science 134(6). DOI: 10.1002/app.44491.

Kapetas, L., Bonnieu, S.V., Danelis, S., Rossen, W.R., Farajzadeh, R., Eftekhari, A.A. & Bahrim, R.K. 2016. Effect of temperature on foam flow in porous media. Journal of Industrial and Engineering Chemistry 36: 229-237.

Kovscek, A.R. & Bertin, H.J. 2003. Foam mobility in heterogeneous porous media II: Experimental observations. Transport in Porous Media 52(1): 37-49.

Lalehrokh, F., Bryant, S.L., Huh, C. & Sharma, M.M. 2008. Application of pH-triggered polymers in fractured reservoirs to increase sweep efficiency. SPE Symposium on Improved Oil Recovery. Society of Petroleum Engineers. pp. 1-8.

Levitt, D., Jackson, A., Heinson, C., Britton, L.N., Malik, T., Dwarakanath, V. & Pope, G.A. 2006. Identification and evaluation of high-performance EOR surfactants. SPE/DOE Symposium on Improved Oil Recovery. Society of Petroleum Engineers. pp. 1-11.

Li, Z.Q., Song, X.W., Wang, Q.W., Zhang, L., Guo, P. & Li, X.L. 2009. Enhanced foam flooding pilot test in chengdong of shengli oilfield: Laboratory experiment and field performance. International Petroleum Technology Conference. DOI: https://doi.org/10.2523/IPTC-13575-MS.

Llave, F.M., Chung, F.H., Louvier, R.W. & Hudgins, D.A. 1990. Foams as mobility control agents for oil recovery by gas displacement. SPE/DOE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers. pp. 1-14.

Memon, M.K., Shuker, M.T. & Elraies, K.A. 2016. Study of blended surfactants to generate stable foam in presence of crude oil for gas mobility control. Journal of Petroleum Exploration and Production Technology 7(1): 77-85.

Meybodi, H.E., Kharrat, R. & Wang, X. 2011. Study of microscopic and macroscopic displacement behaviors of polymer solution in water-wet and oil-wet media. Transport in Porous Media 89(1): 97-120.

Montoya, T., Argel, B.L., Nassar, N.N., Franco, C.A. & Cortés, F.B. 2016. Kinetics and mechanisms of the catalytic thermal cracking of asphaltenes adsorbed on supported nanoparticles. Petroleum Science 13(3): 561-571.

Morin, B., Liu, Y., Alvarado, V. & Oakey, J. 2016. A microfluidic flow focusing platform to screen the evolution of crude oil-brine interfacial elasticity. Lab on a Chip 16(16): 3074-3081.

Murata, S., Ashida, A., Okabe, H., Fukahori, D. & Ishida, T. 2010. Sweep efficiency improvement by blocking already swept high permeable zones in reservoir with biodegradable polymer gel. The IEA EOR 2010 31st Annual Workshop and Symposium, Aberdeen, Scotland, October 18-20.

Nagy, R., Sallai, R., Bartha, L., & Vágó, Á. 2015. Selection method of surfactants for chemical enhanced oil recovery. Advances in Chemical Engineering and Science 5: 121-128.

Nangacovié, H.L.M. 2012. Application of WAG and SWAG Injection Techniques in Norne E-Segment. Department of Petroleum Engineering and Applied Geophysics, Norwegian University of Science and Technology. p. 91.

Nezhad, E.H., Ghorbani, M., Zeinalkhani, M. & Heidari, A. 2013. DNA encapsulation in an anionic reverse micellar solution of dioctyl sodium sulfosuccinate. Physical Chemistry 3(1): 7-10.

Nguyen, Q.P., Currie, P.K. & Zitha, P.L.J. 2005. Effect of crossflowon foam-induced diversion in layered formations. SPE J. 10(1): 54-65.

Osei-Bonsu, K., Shokri, N. & Grassia, P. 2016. Fundamental investigation of foam flow in a liquid-filled Hele-Shaw cell. Journal of Colloid and Interface Science 462: 288-296.

Pu, W., Wei, P., Sun, L. & Wang, S. 2017. Stability, CO2 sensitivity, oil tolerance and displacement efficiency of polymer enhanced foam. RSC Advances 7(11): 6251-6258.

Ransohoff, T.C. & Radke, C.J. 1988. Mechanisms of foam generation in glass-bead packs. Journal of Reservoir Engineering of Society of Petroleum Engineers 3: 573-585. http://dx.doi.org/10.2118/15441-pa.

Sakthipriya, N., Doble, M. & Sangwai, J.S. 2015. Enhanced oil recovery techniques for Indian reservoirs, In Petroleum Geosciences: Indian Contexts, edited by Mukherjee, S. Springer Geology. Springer, Cham. pp. 237-269.

Salehi, M.M., Safarzadeh, M.A., Sahraei, E. & Nejad, S.A.T. 2014. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process. Journal of Petroleum Science and Engineering 120: 86-93.

Schramm, L.L. 2000. Surfactants: Fundamentals and Applications in the Petroleum Industry. Cambrige: Cambridge University Press.

Schramm, L.L. & Novosad, J.J. 1990. Micro-visualization of foam interaction with a crude oil. Colloids Surf. 46(1): 21-43.

Shabib-Asl, A., Ayoub, M.A., Alta’ee, A.F., Saaid, I.B.M. & Valentim, P.P.J. 2014. Comprehensive review of foam application during foam assisted water alternating gas (FAWAG) method. Research Journal of Applied Sciences, Engineering and Technology 8(17): 1896-1904.

Shedid, S.A. 2015. Experimental investigation of alkaline/ surfactant/polymer (ASP) flooding in low permeability heterogeneous carbonate reservoirs. SPE North Africa Technical Conference and Exhibition. Society of Petroleum Engineers. pp. 1-16.

Sheng, J. 2013. Enhanced Oil Recovery Field Case Studies. Gulf Professional Publishing.

Simjoo, M., Rezaei, T., Andrianov, A. & Zitha, P.L.J. 2013. Foam stability in the presence of oil: Effect of surfactant concentration and oil type. Colloids and Surf. A: Physicochem. and Eng. Asp. 438: 148-158.

Sun, L., Pu, W., Xin, J., Wei, P., Wang, B., Li, Y. & Yuan, C. 2015. High temperature and oil tolerance of surfactant foam/ polymer-surfactant foam. RSC Advances 5(30): 23410-23418.

Sun, Q., Li, Z., Wang, J., Li, S., Jiang, L. & Zhang, C. 2015. Properties of multi-phase foam and its flow behavior in porous media. RSC Advances 5(83): 67676-67689.

Talebian, S.H., Tan, I.M., Sagir, M. & Muhammad, M. 2015. Static and dynamic foam/oil interactions: Potential of CO2- philic surfactants as mobility control agents. Journal of Petroleum Science and Engineering 135: 118-126.

Touray, S. 2013. Effect of water alternating gas injection on ultimate oil recovery. Master of Engineering. Dalhousie University. p. 25 (Unpublished).

Tunio, S.Q., Chandio, T.A. & Memon, M.K. 2012. Comparative study of FAWAG and SWAG as an effective EOR technique for a Malaysian field. Research Journal of Applied Sciences, Engineering and Technology 4(6): 645-648.

Tunio, S.Q., Tunio, A.H., Ghirano, N.A. & El-Adawy, Z.M. 2011. Comparison of different enhanced oil recovery techniques for better oil productivity. International Journal of Applied Science and Technology 1(5): 143-153.

Tyrode, E., Pizzino, A. & Rojas, O.J. 2003. Foamability and foam stability at high pressures and temperatures. I. Instrument validation. Review of Scientific Instruments 74(5): 2925-2932.

Tzimas, E., Georgakaki, A., Cortes, C.G. & Peteves, S.D. 2005. Enhanced oil recovery using carbon dioxide in the European energy system. EUR - Scientific and Technical Research Reports 21895(6).

Vasshus, S.S. 2016. Experimental study of foam generation and flow in carbonate fracture systems. Master Thesis. University of Bergen (Unpublished).

Verma, M.K. 2015. Fundamentals of carbon dioxide-enhanced oil recovery (CO2-EOR). A supporting document of the assessment methodology for hydrocarbon recovery using CO2-EOR associated with carbon sequestration: U.S. Geological Survey Open-File Report 2015-1071,19. http:// dx.doi.org/10.3133/ofr20151071.

Wang, Y., Ge, J., Zhang, W., Zhang, G., Lin, Y. & Song, K. 2016. Surface property and enhanced oil recovery study of foam aqueous dispersions comprised of surfactants-organic acids-nanoparticles. RSC Advances 6(114): 113478-113486.

Worthen, A.J., Parikh, P.S., Chen, Y., Bryant, S.L., Huh, C. & Johnston, K.P. 2014. Carbon dioxide-in-water foams stabilized with a mixture of nanoparticles and surfactant for CO2 storage and utilization applications. Energy Procedia 63: 7929-7938.

Xue, Z., Worthen, A., Qajar, A., Robert, I., Bryant, S.L., Huh, C. & Johnston, K.P. 2016. Viscosity and stability of ultra-high internal phase CO2-in-water foams stabilized with surfactants and nanoparticles with or without polyelectrolytes. Journal of Colloid and Interface Science 461: 383-395.

Zeng, Y., Muthuswamy, A., Ma, K., Wang, L., Farajzadeh, R., Puerto, M., Vincent-Bonnieu, S., Akbar Eftekhari, A., Wang, Y., Da, C., Joyce, J.C., Biswal, S.L. & Hirasaki, G.J. 2016. Insights on foam transport from a texture-implicit local-equilibrium model with an improved parameter estimation algorithm. Industrial & Engineering Chemistry Research 55(28): 7819-7829.

Zerhboub, M., Touboul, E., Ben-Naceur, K. & Thomas, R.L. 1994. Matrix acidizing: A novel approach to foam diversion. SPE Production & Facilities 9(2): 121-126.

Zhao, G., Dai, C., Zhang, Y., Chen, A., Yan, Z. & Zhao, M. 2015. Enhanced foam stability by adding comb polymer gel for in-depth profile control in high temperature reservoirs. Colloids and Surfaces A: Physicochemical and Engineering Aspects 482: 115-124.

Zhu, D., Zhang, J., Han, Y., Wang, H. & Feng, Y. 2013. Laboratory study on the potential EOR use of HPAM/VES hybrid in high-temperature and high-salinity oil reservoirs. Journal of Chemistry 2013: Article ID. 927519.

 

 

*Pengarang untuk surat-menyurat; email: chandram1457@gmail.com

 

 

 

 

 

 

 

 

sebelumnya