Sains Malaysiana 47(11)(2018): 2601–2608

http://dx.doi.org/10.17576/jsm-2018-4711-02

 

Ketoksikan Akut Arsenik, Kromium dan Selenium terhadap Moluska Air Tawar di Malaysia; Filopaludina sumatrensis dan Corbicula fluminea

(Acute Toxicity of Arsenic, Chromium and Selenium to Malaysian Freshwater Molluscs; Filopaludina sumatrensis and Corbicula fluminea)

 

NURUL AKHMA ZAKARIA* & AHMAD ABAS KUTTY

 

Pusat Pengajian Sains Sekitaran dan Sumber Alam, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 30 Mac 2018/Diterima: 11 Julai 2018

 

ABSTRAK

Masalah pencemaran sumber air tawar dan kesan ketoksikan logam telah mendapat perhatian di serata negara. Dua spesies organisma air tawar daripada filum moluska Filopaludina sumatrensis dan Corbicula fluminea didedahkan kepada tiga logam terpilih iaitu arsenik (As) kromium (Cr) dan selenium (Se) pada kepekatan berbeza selama 96 jam di dalam makmal terkawal. Kadar kematian dinilai serta kepekatan kematian median (LC50) dan masa kematian median (LT50) dihitung. Nilai LC50 dan LT50 didapati menurun dengan pertambahan masa dan kepekatan pendedahan bagi kedua-dua spesies dan kesemua logam. Keputusan daripada kajian ini memperlihatkan ketoksikan logam As, Cr dan Se semakin meningkat dengan peningkatan kepekatan dan masa pendedahan logam kepada F. sumatrensis dan C. fluminea. Nilai LC50 96 jam As, Cr dan Se bagi F. sumatrensis adalah 4.22, 3.78 dan 45.92 mg/L dan 11.84, 2.23 dan 35.63 mg/L masing-masing bagi C. fluminea. Keputusan menunjukkan Cr adalah logam paling toksik terhadap F. sumatrensis dan C. fluminea. Trend ketoksikan logam bagi kedua-dua moluska ini adalah sama iaitu Cr > As > Se.

 

Kata kunci: Arsenik; ketoksikan akut; kromium; moluska; selenium

 

ABSTRACT

Issues of freshwater pollution and metal toxicity has been gaining concern throughout the country. Two freshwater molluscs, Filopaludina sumatrensis and Corbicula fluminea were exposed to a range of three metals (arsenic (As), chromium (Cr) and selenium (Se)) at varied concentrations for 96 h in the controlled laboratory conditions. Mortality was assessed and median lethal concentrations (LC50) and median lethal times (LT50) were calculated. It was observed that both LC50 and LT50 values increased with a decrease in mean exposure concentrations and times, for both species and all metals. Toxicity of As, Cr dan Se increased with times and exposure concentrations for both F. sumatrensis and C. fluminea. The 96 h LC50 values for As, Cr and Se were 4.22, 3.78 and 45.92 mg/L for F. sumatrensis and 11.84, 2.23 and 35.63 mg/L for C. fluminea, respectively. The results indicated that Cr was the most toxic metal to both F. sumatrensis dan C. fluminea. The metal toxicity trend for both molluscs from most to least toxic was Cr > As > Se.

 

Keywords: Acute toxicity; arsenic; chromium; molluscs; selenium

RUJUKAN

Baudrimont, M., Metivaud, J., MauryBrachet, R., Ribeyre, F. & Boudou, A. 1997. Bioaccumulation and metallothionein response in the Asiatic clam (Corbicula fluminea) after experimental exposure to cadmium and inorganic mercury. Environmental Toxicology and Chemistry 16(10): 2096-2105.

Begum, A., Mustafa, A.I., Amin, M.N., Banu, N. & Chowdhury, T.R. 2013. Accumulation and histopathological effects of arsenic in tissues of shingi fish (Stinging Catfish) Heteropneustes fossilis (Bloch, 1794). Journal of the Asiatic Society of Bangladesh, Science 39(2): 221-230.

Brooke, L.T., Call, D.J., Harting, S.L., Lindberg, C.A., Markee, T.P., McCauley, D.J. & Poirier, S.H. 1985. Acute Toxicity of Selenium (IV) and Selenium (VI) to Freshwater Organisms. Center for Lake Superior Environmental Studies, University of Wisconsin–Superior, Superior, WI, USA.

Buikema Jr., A.L., Niederlehner, B.R. & Cairns Jr, J. 1982. Biological monitoring. Part IV- Toxicity testing. Water Resources 16: 239-262.

El-Shenawy, N.S. 2004. Heavy-metal and microbial depuration of the clam Ruditapes decussatus and its effect on bivalve behavior and physiology. Environ. Toxicol. 19: 143-153.

Elliott, P. & zu Ermgassen, P. 2008. The Asian clam (Corbicula fluminea) in the River Thames, London, England. Aquatic Invasions 3: 54-60.

Ewell, W.S., Gorsuch, J.W., Kringle, R.O., Robillard, K.A. & Spiegel, R.C. 1986. Simultaneous evaluation of the acute effects of chemicals on seven aquatic species. Environmental Toxicology and Chemistry 5(9): 831-840.

Gärdenfors, U., Westermark, T., Emanuelsson, U., Mutvei, H. & Waldén, H. 1988. Use of land-snail shells as environmental archives: Preliminary results. Ambio 17: 347-349.

Guo, X. & Feng, C. 2018. Biological toxicity response of Asian clam (Corbicula fluminea) to pollutants in surface water and sediment. Science of the Total Environment 631: 56-70.

Graney Jr., R.L., Cherry, D.S. & Cairns Jr., J. 1984. The influence of substrate, pH, diet and temperature upon cadmium accumulation in the Asiatic clam (Corbicula fluminea) in laboratory artificial streams. Water Research 18(7): 833-842.

Holcombe, G.W., Phipps, G.L. & Fiandt, J.T. 1983. Toxicity of selected priority pollutants to various aquatic organisms. Ecotoxicology and Environmental Safety 7(4): 400-409.

Huang, H., Wu, J.Y. & Wu, J.H. 2007. Metal monitoring using bivalve shellfish from Zhejiang Coastal water, East China Sea. Environ. Monit. Assess. 129: 315-320.

Hung, T.C., Meng, P.J., Han, B.C., Chuang, A. & Huang, C.C. 2001. Trace metals in different species of mollusca, water and sediment form Taiwan coastal area. Chemosphere 44: 833-841.

Ilarri, M.I., Souza, A.T., Antunes, C., Guilhermino, L. & Sousa, R. 2014. Influence of the invasive Asian clam Corbicula fluminea (Bivalvia: Corbiculidae) on estuarine epibenthic assemblages. Estuarine, Coastal and Shelf Science 143: 12-19.

Intamat, S., Buasriyot, P., Sriuttha, M., Tengjaroenkul, B., & Neeratanaphan, L. 2017. Bioaccumulation of arsenic in aquatic plants and animals near a municipal landfill. International Journal of Environmental Studies 74(2): 303- 314.

JAS. 2016. Laporan Kualiti Alam Sekeliling Malaysia 2015. Kementerian Alam Sekitar dan Sumber Alam, Malaysia: Jabatan Alam Sekitar.

Kadar, E., Salanki, J., Jugdaohsingh, R., Powell, J.J., McCrohan, C.R. & White, K.N. 2001. Avoidance responses to aluminium in the freshwater bivalve Anodonta cygnea. Aquat. Toxicol. 55: 137-148.

Keller, A.E. & Zam, S.G. 1991. The acute toxicity of selected metals to the freshwater mussel, Anodonta imbecilis. Environmental Toxicology and Chemistry 10(4): 539-546.

Khangarot, B.S., Mathur, S. & Durve, V.S. 1982. Comparative toxicity of heavy metals and interaction of metals on a freshwater pulmonate snail Lymnaea acuminata (Lamarck). CLEAN-Soil, Air, Water 10(4): 367-375.

Khangarot, B.S. & Ray, P.K. 1988. Sensitivity of freshwater pulmonate snails, Lymnaea luteola L., to heavy metals. Bulletin of Environmental Contamination and Toxicology 41(2): 208- 213.

Köhler, F., Sri-aroon, P. & Simonis, J. 2012. Filopaludina sumatrensis. The IUCN Red List of Threatened Species 2012: http://www.iucnredlist.org/details/184851/0. Diakses pada 10 Ogos 2017.

Lau, S., Mohamed, M., Yen, A.T.C. & Su’Ut, S. 1998. Accumulation of heavy metals in freshwater molluscs. Science of the Total Environment 214(1-3): 113-121.

Liao, C.M., Jau, S.F., Chen, W.Y., Lin, C.M., Jou, L.J., Liu, C.W., Liao, V.H.C. & Chang, F.J. 2008. Acute toxicity and bioaccumulation of arsenic in freshwater clam Corbicula fluminea. Environmental Toxicology 23(6): 702-711.

Litchfield Jr., J.T. 1949. A method for rapid graphic solution of time-per cent effect curves. The Journal of Pharmacology and Experimental Therapeutics 97(4): 399-408.

Litchfield, J.A. & Wilcoxon, F. 1949. A simplified method of evaluating dose-effect experiments. Journal of Pharmacology and Experimental Therapeutics 96(2): 99-113.

Mance, G. 1987. Pollution Threat of Heavy Metals in Aquatic Environment. Essex: Elsevier Science Publishers Ltd.

Mason, M.F. 1991. Biology of Freshwater Pollution. Ed. ke-2. New York: Longman Scientific & Technical.

Meyer, J.S., Santore, R.C., Bobbitt, J.P., DeBrey, L.D., Boese, C.J., Paquin, P.R. & Allen, H.E. 1999. Binding of nickel and copper to fish gills predicts toxicity when water hardness varies, but free-ion activity does not. Environmental Science & Technology 33(6): 913-916.

Nassos, P.A., Coats, J.R., Metcalf, R.L., Brown, D.D. & Hansen, L.G. 1980. Model ecosystem, toxicity, and uptake evaluation of 75 Se-selenite. Bulletin of Environmental Contamination and Toxicology 24(1): 752-758.

Patrick, R., Scheier, A. & Cairns Jr, J. 1968. The relative sensitivity of diatoms, snails, and fish to twenty common constituents of industrial wastes. The Progressive Fish- Culturist 30(3): 137-140.

Prasad, M.N.V., Sajwan, K.S. & Naidu, R. 2006. Trace Element in the Environment, Biogeochemistry, Biotechnology and Bioremediation. London: Taylor & Francis Group.

Rehwoldt, R., Lasko, L., Shaw, C. & Wirhowski, E. 1973. The acute toxicity of some heavy metal ions toward benthic organisms. Bulletin of Environmental Contamination and Toxicology 10(5): 291-294.

Sangeeta Das. 2012. Toxicological effects of arsenic exposure in a freshwater teleost fish, Channa punctatus. African Journal of Biotechnology 11(19): 4447-4454.

Shuhaimi-Othman, M., Nadzifah, Y., Nur-Amalina, R. & Umirah, N.S. 2013. Deriving freshwater quality criteria for copper, cadmium, aluminum and manganese for protection of aquatic life in Malaysia. Chemosphere 90(11): 2631-2636.

Shuhaimi-Othman, M., Nur-Amalina, R. & Nadzifah, Y. 2012. Toxicity of metals to a freshwater snail, Melanoides tuberculata. The Scientific World Journal 2012: 1-10.

Shrivastava, P., Saxena, A. & Swarup, A. 2003. Heavy metal pollution in a sewage-fed lake of Bhopal, (M.P.) India. Lakes Reserv. Res. Manag. 8: 1-4. https://doi.org/10.1046/j.1440- 1770.2003.00211.x

Simard, A., Paquet, A., Jutras, C., Robitaille, Y., Blier, P., Courtois, R. & Martel, A. 2012. North American range extension of the invasive Asian clam in a St. Lawrence River power station thermal plume. Aquatic Invasions 7: 81-89.

Solem, A. 1974. The Shall Makers, Introducing Mollusks. New York: John Willey & Sons, Inc.

Sousa, R., Antunes, C. & Guilhermino, L. 2008. Ecology of the invasive Asian clam Corbicula fluminea (Muller 1774) in aquatic ecosystems: An overview. Annales de Limnologie - International Journal of Limnology 44: 85-94.

Sriuttha, M., Tengjaroenkul, B., Intamat, S., Phoonaploy, U., Thanomsangad, P. & Neeratanaphan, L. 2016. Cadmium, chromium, and lead accumulation in aquatic plants and animals near a municipal landfill. Human and Ecological Risk Assessment 23(2): 1-14.

Tsangaris, C., Papathanasiou, E. & Cotou, E. 2007. Assessment of the impact of heavy metal pollution from a ferro-nickel smelting plant using biomarkers. Ecotoxicology and Environmental Safety 66(2): 232-243.

Voigt, C.L., da Silva, C.P., Doria, H.B., Ferreira Randi, M.A., de Oliveira Ribeiro, C.A. & de Campos, S.X. 2014. Bioconcentration and bioaccumulation of metal in freshwater Neotropical fish Geophagus brasiliensis. Environmental Science and Pollution Research 22: 8242-8252.

Zuykov, M., Pelletier, E. & Harper, D.A. 2013. Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring. Chemosphere 93(2): 201-208.

 

*Pengarang untuk surat-menyurat; email: nurulakhmazakaria@yahoo.com

 

 

 

 

 

sebelumnya