Sains Malaysiana 48(10)(2019): 2265–2275
http://dx.doi.org/10.17576/jsm-2019-4810-23
Synthesis and Characterization of Star-Shaped
(PCL-B-PEG) as Potential Electrospun Microfibres
(Sintesis dan Pencirian Berbentuk Bintang
(PCL-B-PEG) Berpotensi sebagai Elektrospun Mikrogentian)
WAFIUDDIN ISMAIL1,
RUSLI
DAIK2,
SHAFIDA
ABD
HAMID1
& WAN KHARTINI WAN
ABDUL
KHODIR*1
1Department of Chemistry, Kulliyyah
of Science, International Islamic University Malaysia, Kuantan Campus,
Bandar Indera Mahkota, 25200 Kuantan, Pahang Darul Makmur, Malaysia
2School of Chemical Science and Food
Technology, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
16 Mei 2019/Diterima: 30 Ogos 2019
ABSTRACT
Star-shaped
polymers have vast potential in application due to their architecture.
In this study, a 6-arm star-shaped of poly(ԑ-caprolactone)-b-poly(ethylene
glycol), (6PCG) was synthesized via ring opening polymerization, (ROP)
of ԑ-caprolactone and Steiglich esterification (coupling reaction)
to attach the PEG arm to the star-shaped polymer with discrete core of
dipentaerythritol. The polymer chemical structure was characterized
by FT-IR.
The molecular weight (Mn) determined from 1H NMR spectra
showed that the star polymer has approximately the same molecular
weight as the theoretical value. The polydispersity index indices
(PDI)
(>1.5) from GPC were narrow suggesting controlled
polymerization reaction. Thermal stability of the star-shaped 6PCG
were examined using thermogravimetric analysis, (TGA)
and differential scanning calorimetry, (DSC) and showed slight increase
compared to homopolymer star PCL due to the changes of end-group
functionalities. Six-arm star-shaped PCL-b-PEG was
dissolved in chloroform/methanol solvents and the resulting solution
was used for electrospinning process. The morphology of nanofibres
showed fine fibres without beads and thus a possible potential for
several applications.
Keywords:
Electrospinning; polycaprolactone; star polymer
ABSTRAK
Polimer berbentuk
bintang memiliki
potensi yang besar dalam pelbagai aplikasi kerana reka bentuknya. Dalam kajian ini,
polimer berbentuk
bintang dengan 6 cabang poli(ԑ-kaprolakton)-b-poli(etilena glikol),
(6PCG) disintesis melalui pempolimeran pembukaan gelang, (ROP)
ԑ-kaprolakton dan
pengesteran Steiglich (tindak balas gabungan)
untuk menggabungkan
PEG
kepada polimer berbentuk bintang dengan teras diskret
dipenteritritol. Struktur
kimia polimer dicirikan
oleh FT-IR. Berat
molekul (Mn)
yang ditentukan daripada
spektrum 1H NMR menunjukkan
bahawa polimer
bintang ini mempunyai
berat molekul
yang hampir sama sebagai
nilai teori.
Indeks kepolitaburan (PDI)
(>1.5) yang diperoleh daripada
analisis GPC mencadangkan
tindak balas
pempolimeran adalah tindak balas terkawal.
Kestabilan terma
6PCG
polimer berbentuk bintang ini telah
dianalisis menggunakan
analisis termogravimetrik, (TGA)
dan kalorimetri
imbasan perbezaan (DSC)
dengan ia menunjukkan peningkatan kestabilan terma berbanding homopolimer bintang PCL disebabkan
oleh perubahan
kumpulan berfungsi terminal akhir. Polimer PCL-b-PEG berbentuk bintang dengan 6 cabang ini kemudiannya dilarutkan dalam pelarut kloroform/metanol dan larutan
yang terhasil digunakan
untuk proses elektroputaran. Morfologi nanogentian yang terhasil
menunjukkan gentian halus tanpa manik
menjadikan gentian ini berpotensi untuk aplikasi yang luas.
Kata kunci: Elektroputaran;
polikaprolakton; polimer bintang
RUJUKAN
An, J.H., Kim, H.S., Chung, D.J. & Lee, D.S. 2001. Thermal behavior
of poly(ԑ-caprolactone)-poly(ethylene glycol)- poly(ԑ-caprolactone)
tri-block copolymers. Journal of Materials Science 36: 715-722.
Aryal, S., Prabaharan, M., Pilla, S. & Gong, S. 2009. Biodegradable
and biocompatible multi-arm star amphiphilic block copolymer as
a carrier for hydrophobic drug delivery. International Journal
of Biological Macromolecules 44: 346-352.
Bao, W., Zhang, Y., Yin, G. & Wu, J. 2008. The structure and
property of the electrospinning silk fibroin/gelatin blend nanofibers.
E-Polym. 8: 1131-1139.
Bosworth, L.A. & Downes, S. 2011. Electrospinning for Tissue
Regeneration. Oxford, UK: Woodhead Publishing in Materials.
Castillo, R.V. & Muller, A.J. 2009. Crystallization and morphology
of biodegradable or biostable single and double crystalline block
copolymers. Progress in Polymer Science 34(6): 516-560.
Colwell, J.M. 2008. Synthesis of polycaprolactone polymers for bone
tissue repair. PhD Thesis, Queensland University of Technology,
Australia (Unpublished).
DerSchueren, L.V., DeSchoenmaker, B., Kalaoglu, O.I. & Clerck,
K.D. 2011. An alternative solvent system for the steady state electrospinning
of polycaprolactone. European Polymer Journal 47(6): 1256-1263.
Fong, H., Liu, W., Wang, C.S. & Vaia, R.A. 2002. Generation of
electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite.
Polymers 43: 775-780.
Fong, H., Chun, I. & Reneker, D.H. 1999. Beaded nanofibers formed
during electrospinning. Polymer 40(16): 4585-4592.
Frenot, A. & Chronakis, I.S. 2003. Polymer nanofibers assembled
by electrospinning. Current Opinion in Colloid and Interface
Science 8: 64-75.
Gaucher, G., Dufresne, M.H., Sant, V.P., Kang, N., Maysinger, D.
& Leroux, J.C. 2005. Block copolymer micelles: Preparation,
characterization and application in drug delivery. Journal of
Controlled Release 109: 169-188.
Gazzarri, M., Bartoli, C., Mota, C., Puppi, D., Dinucci, D., Volpi,
S. & Chiellini, F. 2013. Fibrous star poly(ԑ-caprolactone)
melt-electrospun scaffolds for wound healing applications. J.
Bioactive. Com. Polym. 28(5): 492-507.
Ghalia, M.A. & Dahman, Y. 2015. Radiation crosslinking polymerization
of poly(vinyl alcohol) and poly(ethylene glycol) with controlled
drug release. Journal of Polymer Research 22(218): 1-9.
Grafahrend,
D., Heffels, K.H., Beer, M.V., Gasteier, P., Moller, M., Boehm,
G., Dalton, P.D. & Groll, J. 2010. Degradable polyester scaffolds
with controlled surface chemistry combining minimal protein adsorption
with specific bioactivation. Nature Materials 10: 67-73.
Grayson,
S.M., Poree, D.E., Giles, M.D., Lawson, L.B. & He, J. 2011.
Synthesis of amphiphilic star block copolymers and their evaluation
as transdermal carriers. Biomacromolecules 12: 898-906.
Gong,
C.Y., Shi, S., Dong, P.W., Yang, B., Qi, X.R., Guo, G., Gu, Y.C.,
Zhao, X., Wei, Y.Q. & Qian, Z.Y. 2009. Biodegradable in situ
gel-forming controlled drug delivery system based on thermosensitive
PCL-PEG-PCL hydrogel: Part 1-synthesis, characterization, and acute
toxicity evaluation. Journal of Pharmaceutical Sciences 98:
4684-4694.
Huang,
Z.M., Zhang, Y.Z., Kotaki, M. & Ramakrishna, S. 2003. A review
on polymer nanofibers by electrospinning and their applications
in nanocomposites. Composites Science and Technology 63:
2223-2253.
Hua,
C. & Dong, C.M. 2007. Synthesis, characterization, effect of
architecture on crystallization of biodegradable poly(epsilon-caprolactone)-b-poly(ethylene
oxide) copolymers with different arms and nanoparticles thereof.
Journal of Biomedical Materials Research Part A 82(3): 689-700.
Izunobi,
J.U. & Higginbotham, C.L. 2011. Polymer molecular weight analysis
by 1H NMR spectroscopy. J. Chem. Educ. 88: 1098-1104.
Kakizawa,
Y. & Kataoka, K. 2002. Block copolymer micelles for delivery
of gene and related compounds. Advanced Drug Delivery Reviews
54: 203-222.
Kaur,
K. & Juglan, K.C. 2015. Studies of molecular interaction in
the binary mixture of chloroform and methanol by using ultrasonic
technique. Der Pharma Chemica 7(2): 160-167.
Khanna,
K., Varshney, S. & Kakkar, A. 2010. Miktoarm star polymers:
Advances in synthesis, self-assembly, and applications. Polym.
Chem. 1: 1171-1185
Lee,
H.C., Chang, T., Harville, S. & Ways, J.W. 1998. Characterization
of linear and star polystyrene by temperature-gradient interaction
chromatography with a light-scattering detector. Macromolecules
31(3): 690-694.
Lee,
H.J., Lee, S.J., Uthaman, S., Thomas, R.G., Hyun, H., Jeong, Y.Y.,
Cho, C.S. & Park, I.K. 2015. Biomedical applications of magnetically
functionalized organic/inorganic hybrid nanofibers. Int. J. Mol.
Sci. 16: 13661-13677.
Lee,
G., Song, J. & Yoon, K. 2010. Controlled wall thickness and
porosity of polymeric hollow nanofibers by coaxial electrospinning.
Macromolecular Research 18: 571-576.
Letchford,
K., Zastre, J., Liggins, R. & Burt, H. 2005. Synthesis and micellar
characterization of short block length methoxy poly(ethylene glycol)-block-poly(caprolactone)
diblock copolymers. Colloid Surface B 35(2): 81-91.
Li,
H., Qiao, T., Song, P., Guo, H., Song, X., Zhang, B. & Chen,
X. 2015. Star-shaped PCL/PLLA blended fiber membrane via electrospinning.
Journal of Biomaterials Science, Polymer Edition 26(7): 420-432.
Li,
R., Li, X., Xie, L., Ding, D., Hu, Y., Qian, X., Yu, L., Ding, Y.,
Jiang, X. & Liu, B. 2009. Preparation and evaluation of PEG-PCL
nanoparticles for local tetradrine delivery. International Journal
of Pharmaceutics 379: 158-166.
Li,
X., Yang, C., Yang, S. & Li, G. 2012. Fiber-optical sensors:
Basics and applications in multiphase reactors. Sensors 12:
2519-12544.
Lim,
H.J., Lee, H., Kim, K.H., Huh, J., Ahn, C.H. & Kim, W.J. 2013.
Effect of molecular architecture on micellization, drug loading
and releasing of multi-armed poly(ethylene-glycol-b-poly(e-caprolactone)
star polymers. Colloids Polymer Science 291: 1817-1827.
Lu,
C., Guo, S.R., Zhang, Y. & Yin, M. 2006. Synthesis and aggregation
behavior of four types of different shaped PCL-PEG block copolymers.
Polymer International 55(6): 694-700.
Maglio,
G., Nese, G., Nuzzo, M. & Palumbo, R. 2004. Synthesis and characterization
of star-shaped diblock poly(e-caprolactone)/poly(ethylene oxide)
copolymers. Macromolecular Rapid Communications 25: 1139-1144.
Mckee,
M.G., Wilkes, G.L., Colby, R.H. & Long, T.E. 2004. Correlations
of solution rheology with electrospun fiber formation of linear
and branched polyesters. Macromolecules 37: 1760-1767.
Meier,
A.R., Aerts, N.H., Staal, B.P., Rasa, M. & Schubert, U.S. 2005.
PEO-b-PCL Block copolymers: Synthesis, detailed characterization,
and selected micellar drug encapsulation behavior. Macromol.
Rapid Commun. 26: 1918-1924.
Mota,
C., Puppi, D., Dinucci, D., Gazzarri, M. & Chiellini, F. 2013a.
Additive manufacturing of star poly(ε-caprolactone) wetspun
scaffolds for bone tissue engineering applications. J. Bioactive
Com. Polym. 28(4): 320-340.
Mota,
C., Puppi, D., Gazzarri, M., Bartolo, P. & Chiellini, F. 2013b.
Melt electrospinning writing of three-dimensional star poly(ԑ-caprolactone)
scaffolds. Polym. Int. 62: 893-900.
Nabid,
M.R., Razaei, S.J.T., Niknejad, H., ENtezami, A.A., Oskooie, H.A.
& Heravi, M.M. 2011. Self-assembled micelles of well-defined
pentaerythritol-centered amphiphilic. A4B8 star-blocked
copolymers based on PCL and PEG for hydrophobic dug deliver. Polymer
52: 2799-2809.
Nishiyama,
N. & Kataoka, K. 2006. Current state, achievements, and future
prospects of polymeric micelles as nanocarriers for drug and gene
delivery. Pharmacology Therapeutics 112: 630-648.
Puppi,
D., Piras, A.M., Chiellini, F., Chiellini, E., Martins, A., Leonor,
I.B., Neves, N. & Reis, R. 2011. Optimized electro- and wet-spinning
techniques for the production of polymeric fibrous scaffolds loaded
with bisphosphonate and hydroxyapatite. J. Tissue Eng. Regen.
Med. 5: 253-263.
Puppi,
D., Detta, N., Piras, A.M., Chiellini, F. & Clarke, D.A. 2010.
Development of electrospun three-arm star poly(caprolactone) mashes
for tissue engineering applications. Macromolecular Bioscience
10: 887-897.
Pierozynski,
B. 2011. On the hydrogen evolution reaction at nickel-coated carbon
fibre in 30 wt. % KOH solution. Int. J. Electrochem. Sci. 6:
63-77.
Qian,
Y., Su, Y., Li, X., Wang, H. & He, C. 2010. Electrospinning
of polymethyl methacrylate nanofibres in different solvents. Iranian
Polymer Journal 19: 123-129.
Rosic,
R., Kocbek, R., Pelipenko, J., Kristl, J. & Baumgartner, S.
2013. Nanofibers and their biomedical use. Acta Pharm. 63:
295-304.
Smallwood,
I.M. 1996. Handbook of Organic Solvents Properties. Toronto,
Canada: Wiley & Sons.
Soliman,
G.M., Sharma, R., Choi, A.O., Varshney, S.K., Winnik, F.M., Kakkar,
A. & Maysinger, D. 2010. Tailoring the efficiency of nimodipine
drug delivery using nanocarriers base on A2B miktoarm star polymers. Biomaterials
31: 8382-8392.
Subbiah, T., Bhat, G.S., Tock, R.W.,
Parameswaran, S. & Ramkumar, S.S. 2005. Electrospinning of nanofibers.
Journal of Applied Polymer Science 96: 557-569.
Sun, J., He, C., Zhuang, X., Jing,
X. & Chen, X. 2011. The crystallization behavior of poly(ethylene
glycol)-poly (ε-caprolactone) diblock copolymers with asymmetric
block compositions. Journal of Polymer Research 18: 2161-2168.
Tao, X. 2001. Smart Fibers, Fabrics
and Clothing. LLC. Cambridge CB1 6AH, England: Woodhead Publishing
Ltd and CRC Press.
Teo, W.E. & Ramakrishna, S. 2006.
A review on electrospinning design and nanofibre assemblies. Nanotechnology
17: 89-106.
Tsou, S.Y., Lin, H.S. & Wang,
C. 2011. Studies on the electrospun nylon 6 nanofibers from polyelectrolyte
solutions: Effects of solution concentration and temperature. Polymer
v52(14): 3127-3136.
Uhrich, K.E., Djordjevic, J. &
Michniak, B. 2003. Amphiphilic star-like macromolecules as novel
carriers for topical delivery of nonsteroidal anti-inflammatory
drugs. AAPs PharmSci. 5: 1-12.
Wan Abdul Khodir, W.K., Abdul Razak,
A.H., Ng, M.H., Guarino, V. & Susanti, D. 2018. Encapsulation
and characterization of gentamicin sulfate in the collagen added
electrospun nanofibers for skin regeneration. J. Funct. Biomater.
9(2): 36.
Wang, F., Bronich, T.K., Kabannov,
A.V., Rauh, D. & Roovers, J. 2005. Synthesis and evaluation
of a star amphiphilic block copolymer from poly(e-caprolactone)
and poly(ethylene glycol) as a potential drug delivery carrier.
Bioconjugate Chemistry 16: 397-405.
Zeronian, S.H., Inglesby, M.K., Pan,
N., Lin, D., Sun, G., Soni, B., Alger, K.W. & Gibbon, J.D. 1999.
The fine structure of bicomponent polyester fibers. Journal of
Applied Polymer Science 71: 1163-1173.
Zeiml, M., Leithner, D., Lackner,
R. & Mang, H.A. 2006. How do polypropylene fibers improve the
spalling behavior of in-situ concrete. Cement and Concrete
Research 36: 929-942.
Zhou, S., Deng, X. & Yang, H.
2003. Biodegradable poly(e-caprolactone)-poly(ethylene glycol) block
copolymers: Characterization and their use as drug carriers for
a controlled delivery system. Biomaterials 24: 3563-3570.
Zhu, J., Zhu, H., Njuguna, J. &
Abhyankar, H. 2003. Recent development of flax fibres and their
reinforced composites based on different polymeric matrices. Materials
6: 5171- 5198.
*Pengarang untuk surat-menyurat;
email: wkhartini@iium.edu.my
|