Sains Malaysiana 48(10)(2019): 2277–2284
http://dx.doi.org/10.17576/jsm-2019-4810-24
Source Term Atmospheric Release and
Core Inventory Analysis for the PUSPATI TRIGA Reactor under Severe
Accident Conditions
(Pengeluaran Atmosfera Source Term dan
Analisis Inventori Teras bagi Reaktor PUSPATI TRIGA di
bawah Keadaan Kemalangan yang Teruk)
SITI NUR AIN SULAIMAN1,
FAIZAL MOHAMED1,2*, AHMAD NABIL AB
RAHIM3, MOHAMMAD SUHAIMI KASSIM3 & NA’IM SHAUQI
HAMZAH3
1Nuclear Science Programme, School
of Applied Physics, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Institut
Islam Hadhari, Kompleks Tun Abdullah Mohd Salleh, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
3Reactor
Technology Center, Malaysian Nuclear Agency, MESTECC, Bangi, 43000
Kajang, Selangor Darul Ehsan, Malaysia
Diserahkan:
8 November 2018/Diterima: 22 Ogos 2019
ABSTRACT
The estimation
of core inventory and source term of nuclear reactor is a part of
procedures for conducting a Level 2 Probabilistic Safety Assessment
(PSA).
Currently, there are not many studies in this area for nuclear research
reactors, as it is yet to be made compulsory in the regulatory licensing
process among the nuclear-powered countries. This assessment is
important to be done in order to be informed about the severity
of a nuclear accident. In this study, the type of radionuclides
and their activities when unintentionally released to the atmosphere
were calculated using the ORIGEN2
code. This work was carried out for PUSPATI TRIGA Reactor (RTP)
under a hypothetical severe accident. The core inventory for RTP was
determined by assuming the reactor to be operated continuously for
365 days at full power (1 MWt). 42 radionuclides were chosen due
to their dominant effects in source term. The atmospheric release
of radionuclides is not the same as another depending on the physical
condition of the reactor after the accident. The effects of these
radionuclides when exposed to the public may cause serious health
concern.
Keywords:
Atmospheric dispersion; core inventory; ORIGEN2; severe accident; source
term
ABSTRAK
Anggaran
inventori teras dan source term untuk reaktor nuklear merupakan sebahagian daripada
prosedur dalam menjalankan Penilaian Kebarangkalian Keselamatan
(PSA)
Tahap 2. Pada masa ini, tidak banyak kajian sebegini dilakukan ke
atas reaktor nuklear penyelidikan, memandangkan ia belum lagi diwajibkan
dalam peraturan proses perlesenan dalam kalangan negara yang menggunakan
tenaga nuklear. Penilaian sebegini adalah penting untuk dijalankan
untuk mengetahui tahap keterukan situasi apabila berlakunya kemalangan
nuklear. Dalam kajian ini, jenis radionuklid dan aktivitinya apabila
berlaku perlepasan tidak sengaja dikenalpasti dengan menggunakan
kod ORIGEN2. Kajian ini dilakukan
ke atas Reaktor TRIGA PUSPATI (RTP)
yang dianggap berada dalam keadaan kemalangan teruk hipotetik. Inventori
teras untuk RTP ditentukan dengan andaian bahawa reaktor beroperasi
selama 365 hari tanpa henti dengan kuasa penuh (1 MWt). 42 radionuklid
dipilih berdasarkan kesan dominan dalam source term. Bergantung
kepada keadaan fizikal reaktor selepas kemalangan terjadi, situasi
perlepasan radionuklid ke atmosfera adalah tidak sama mengikut kes.
Kesan daripada dedahan radionuklid ini kepada orang awam juga boleh
menyebabkan masalah kesihatan yang serius.
Kata kunci: Inventori
teras; kemalangan teruk; ORIGEN2; perlepasan atmosfera; source term
RUJUKAN
Apostoaei, A.I., Burns, R.E., Hoffman, F.O., Ijaz, T., Lewis, C.J.,
Nair, S.K. & Widner, T.E. 1999. Radionuclide Releases to
the Clinch River from White Oak Creek on the Oak Ridge Reservation
- an Assessment of Historical Quantities Released, Off-Site Radiation
Doses, and Health Risks, hlm. Vol. 4. Tennessee Department of
Health.
Foudil, Z., Mohamed, B. & Tahar, Z. 2017. Estimating of core
inventory, source term and doses results for the NUR research reactor
under a hypothetical severe accident. Progress in Nuclear Energy
100: 365-372. doi:10.1016/j. pnucene.2017.07.013.
Gandhi, S. & Kang, J. 2013. Nuclear safety and nuclear security
synergy. Annals of Nuclear Energy 60: 357-361. doi:10.1016/j.anucene.2013.05.002.
Glumac, B., Ravnik, M. & Logar, M. 1997. Criticality safety assessment
of a TRIGA reactor spent-fuel pool under accident conditions 117(2):
248-254. doi:10.13182/NT97-A35329.
Hasegawa, A., Tanigawa, K., Ohtsuru, A., Yabe, H., Maeda, M., Shigemura,
J., Ohira, T., Tominaga, T., Akashi, M., Hirohashi, N., Ishikawa,
T., Kamiya, K., Shibuya, K., Yamashita, S. & Chhem, R.K. 2015.
Health effects of radiation and other health problems in the aftermath
of nuclear accidents, with an emphasis on Fukushima. The Lancet
386(9992): 479-488. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=referen
ce&D=medl&NEWS=N&AN=26251393%0Ahttp://www. journals.elsevier.com/the-lancet/%0Ahttp://ovidsp.ovid.com/
ovidweb.cgi?T=JS&PAGE=reference&D=emed17&NEWS =N&AN=605503106.
Haydn, M. 2009. Accident Scenarios with Environmental Impact of
the TRIGA Mark II Reactor Vienna. Diploma Thesis. Atominstitut,
Vienna University of Technology (Unpublished).
IAEA. 2016. Safety of Nuclear Power Plants: Design (NS-R-1) 1:
73.
IAEA. 2008. Derivation of the Source Term and Analysis of the
Radiological Consequences of Research Reactor Accidents.
IAEA. 2003. Accident Analysis for Nuclear Power Plants with Pressurized
Water Reactors. Safety Reports (30): 65.
IAEA. 1996. Procedures for Conducting Probabilistic Safety Assessments
of Nuclear Power Plants (Level 3). http:// gnssn.iaea.org/Superseded
Safety Standards/Safety_ Series_050-P-12_1996.pdf.
IAEA. 1993. Defining initiating events for purposes of probabilistic
safety assessment (September).
IAEA. 1992. Research Reactor Core Conversion Guidebook 1.
Kadowaki, M., Nagai, H., Terada, H., Katata, G. & Akari, S. 2017.
Improvement of atmospheric dispersion simulation using an advanced
meteorological data assimilation method to reconstruct the spatiotemporal
distribution of radioactive materials released during the Fukushima
Daiichi Nuclear Power Station accident. Energy Procedia 131:
208-215. doi:10.1016/j.egypro.2017.09.465.
Malek, M.A., Chisty, K.J.A. & Rahman, M.M. 2012. Dose distribution
of 131I, 132I, 133I, 134I, and 135I due to a hypothetical accident
of TRIGA Mark-II research reactor. International Journal of Basic
and Applied Sciences. doi:10.14419/ijbas.v1i3.110.
Margeanu, S., Margeanu, C.A., Paunoiu,
C. & Angelescu, T. 2015. Dose calculation for accident situations
at TRIGA research reactor using LEU fuel type. Romanian Reports
in Physics 60(January 2008): 57-61. https://www.researchgate.
net/publication/268405124_Dose_calculation_for_accident_ situations_at_TRIGA_research_reactor_using_LEU_fuel_
type.
Marques, P. 2012. The deleterious
effects of the nuclear crisis in Japan. Estudos Avancados 26(74):
309-312. doi:10.1590/ S0103-40142012000100022.
Mirza, S.M., Khan, A. & Mirza,
N.M. 2010. Post-shutdown decay power and radionuclide inventories
in the discharged fuels of HEU and potential LEU miniature neutron
source reactors. Annals of Nuclear Energy 37(5): 701-706.
doi:10.1016/j. anucene.2010.02.001.
Muswema, J.L., Ekoko, G.B., Lukanda,
V.M., Lobo, J.K.K., Darko, E.O. & Boafo, E.K. 2015. Source term
derivation and radiological safety analysis for the TRICO II research
reactor in Kinshasa. Nuclear Engineering and Design 281:
51-57. doi:10.1016/j.nucengdes.2014.11.014.
NRC. 2000. Alternative Radiological
Source Terms for Evaluating Design Basis Accidents at Nuclear Power
Reactors, Regulatory Guide 1.183.
Obaidurrahman, K. & Gupta, S.K.
2013. Reactor core heterogeneity effects on radionuclide inventory.
Annals of Nuclear Energy 53: 244-253. doi:10.1016/j.anucene.2012.09.016
ORNL. 1999. RSICC Computer Code Collection:
Origen 2.1 224.
Parks, C.V. 1992. Overview of ORIGEN2
and ORIGEN-S: Capabilities and Limitations. American Nuclear
Society 24(04): 57-64.
PUSPATI. 2017. Safety Analaysis
Report for PUSPATI TRIGA MARK II Reactor Facility, Tech. rep., Pusat
Penyelidikan Atom Tun Ismail.
Raza, S.S. & Iqbal, M. 2005. Atmospheric
dispersion modeling for an accidental release from the Pakistan
Research Reactor-1 (PARR-1). Annals of Nuclear Energy 32(11):
1157-1166. doi:10.1016/j.anucene.2005.03.008.
Rim, K.T., Koo, K.H. & Park, J.S.
2013. Toxicological evaluations of rare earths and their health
impacts to workers: A literature review. Safety and Health at
Work 4(1): 12-26. doi:10.5491/shaw.2013.4.1.12.
Rozainiee, M., Ngo, S.P., Salema,
A.A. & Tan, K.G. 2008. Renewable energy sources from biomass
through incineration. The Ingenieur 37: 13-21.
Tao, Wei-Kao. 2012. Impact of aerosols
on convectiveclouds and precipitation. Reviews of Geophysics
(2011). doi:10.1029/20 11RG000369.1.INTRODUCTION.
Ullah, S., Awan, S.E., Mirza, N.M.
& Mirza, S.M. 2010. Source term evaluation for the upgraded
LEU Pakistan Research Reactor-1 under severe accidents. Nuclear
Engineering and Design 240(11): 3740-3750. doi:10.1016/j. nucengdes.2010.08.017.
Usang, M.D., Hamzah, N.S., Abi, M.J.B.,
Rawi, M.M.Z. & Abu, M.P. 2014. TRIGA MARK-II source term. AIP
Conference Proceedings 1584: 45-49. doi:10.1063/1.4866102.
Villa, M., Haydn, M., Steinhauser,
G. & Böck, H. 2010. Accident scenarios of the TRIGA Mark II
reactor in Vienna. Nuclear Engineering and Design 240(12):
4091-4095. doi:10.1016/j. nucengdes.2010.10.001.
*Pengarang untuk surat-menyurat;
email: faizalm@ukm.edu.my
|