Sains Malaysiana 48(11)(2019): 2391–2403

http://dx.doi.org/10.17576/jsm-2019-4811-10

 

Statistical Evaluation of Landfill Leachate System and Its Impact on Groundwater and Surface Water in Malaysia

(Penilaian Statistik Sistem Air Larut Resap Tapak Pelupusan Sampah dan Kesannya terhadap Air Bawah Tanah dan Air Permukaan di Malaysia)

 

TAWFIQ J.H. BANCH1, MARLIA M. HANAFIAH1,2*, ABBAS F.M. ALKARKHI3 & SALEM S. ABU AMR3

 

1Center for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Malaysian Institute of Chemical & Bioengineering Technology, Universiti Kuala Lumpur (UniKL, MICET), 78000 Melaka, Malaysia

 

Diserahkan: 4 April 2019/Diterima: 15 Ogos 2019

 

ABSTRACT

In this study, leachate collection and processing system in Ampar Tenang Closed Landfill (ATCL) and its impact on both groundwater and surface water was evaluated. Samples from three locations in leachate processing system (Collection, aeration and stabilization ponds), groundwater and surface water were collected and tested for twenty-one parameters covering nine heavy metals (Fe2+, Zn2+, Cu2+, Cr2+, Cd2+, Pb+, As3+, Co2+ and Mn2+) and twelve physiochemical parameters (Mg2+, Ca2+, Na+, chemical oxygen demand (COD), biochemical oxygen demand (BOD), total dissolved solids (TDS), total suspended solids (TSS), electrical conductivity (EC), pH, ammoniacal nitrogen (NH3-N) and dissolved oxygen (DO). Correlation analysis for landfill leachate ponds, groundwater and surface water showed different patterns of relationships between all possible combinations of two parameters. Similarity and dissimilarity were studied through cluster analysis, three clusters were found to entirely separate the collection pond (cluster 1) while the two ponds were clustered with groundwater samples (cluster 2) and the third cluster is for the surface water. This study shows the benefit of statistical analysis such as correlation analysis and cluster analysis for evaluation and interpretation of landfill data to understand the behavior of the selected parameters and to have a clear picture about the pattern of the relationship for effective landfill management.

 

Keywords: Cluster analysis; correlation matrix; descriptive statistics; heavy metals; landfill site; leachate

 

ABSTRAK

Dalam kajian ini, sistem pengumpulan dan pemprosesan air larut resap di Tapak Pelupusan Tertutup Ampar Tenang (ATCL) dan kesannya terhadap air bawah tanah dan air permukaan telah dinilai. Sampel daripada tiga lokasi dalam sistem pemprosesan air larut resap (kolam pengumpulan, pengudaraan dan penstabilan), air bawah tanah dan air permukaan diperoleh dan diuji untuk dua puluh satu parameter iaitu sembilan jenis logam berat (Fe2+, Zn2+, Cu2+, Cr2+, Cd2+, Pb+, As3+, Co2+ dan Mn2+) dan dua belas parameter fizikokimia (Mg2+, Ca2+, Na+, permintaan oksigen kimia (COD), permintaan oksigen biokimia (BOD), jumlah pepejal terlarut (TDS), jumlah pepejal terampai (TSS), konduktiviti elektrik (EC), pH, ammonia nitrogen (NH3-N) dan oksigen terlarut (DO)). Analisis korelasi untuk kolam air larut resap, air bawah tanah dan air permukaan menunjukkan corak hubungan yang berbeza antara semua kemungkinan gabungan dua parameter. Persamaan dan ketidaksetaraan dikaji melalui analisis kelompok dan tiga kelompok didapati memisahkan kolam pungutan sepenuhnya (kelompok 1) manakala dua kolam berkumpul dengan sampel air bawah tanah (kelompok 2) dan kelompok ketiga adalah untuk air permukaan. Analisis statistik seperti analisis korelasi dan analisis kelompok untuk penilaian dan pentafsiran data tapak pelupusan sampah dapat membantu dalam memahami ciri-ciri parameter terpilih dan untuk mendapatkan gambaran yang jelas mengenai corak perhubungan bagi pengurusan tapak pelupusan sampah yang berkesan.

 

Kata kunci: Air larut resap; analisis kelompok; logam berat; matriks korelasi; statistik diskriptif; tapak pelupusan sampah

RUJUKAN

Abdul Aziz, N.I.H. & Hanafiah, M.M. 2020. Life cycle analysis of biogas production from anaerobic digestion of palm oil mill effluent. Renewable Energy 145: 847-857.

Abdul Aziz, N.I.H., Hanafiah, M.M. & Ali, M.Y.M. 2019. Sustainable biogas production from agrowaste and effluents - A promising step for small-scale industry income. Renewable Energy 132: 363-369.

Abdulhasan, M.J., Hanafiah, M.M., Satchet, M.S., Abdulaali, H.S., Toriman, M.E. & Al-Raad, A.A. 2019. Combining GIS, fuzzy logic and AHP models for solid waste disposal site selection in Nasiriyah, Iraq. Applied Ecology and Environmental Research 17(3): 6701-6722.

Agamuthu, P. 2001. Heavy metal contamination of soil-derived interstitial water in the coastal regions of Selangor Malaysia. Malays. J. Sci. B 20: 127-134.

Agamuthu, P., Hamid, F.S. & Khidzir, K. 2009. Evolution of solid waste management in Malaysia: Impacts and implications of the solid waste bill, 2007. J. Mater. Cycles Waste Management 11(2): 96-103.

Agamuthu, P., Fauziah, S.H. & Emenike, C.U. 2011. Waste management in Asia: The associated toxicity. In Proceedings of 3rd International Conference on Ecotoxicology and Environmental Sciences. pp. 187-200.

Alkarkhi, A.F., Ismail, N., Ahmed, A. & Mat Easa, A. 2009. Analysis of heavy metals concentrations in sediments of selected estuaries of Malaysia - A statistical assessment. Environmental Monitoring and Assessment 153(1-4): 179- 185.

Alkarkhi, A.F., Ahmad, A., Ismail, N. & Easa, A.M. 2008. Multivariate analysis of heavy metals concentrations in river estuary. Environmental Monitoring and Assessment 143: 179-186.

Alslaibi, T.M., Abunada, Z., Abu Amr, S.S. & Abustan, I. 2018. Risk assessment of nitrate transport through subsurface layers and groundwater using experimental and modeling approach. Environmental Technology 39(21): 2691-2702.

APHA. 2005. Standard Methods for the Examination of Water and Wastewater, Volume 21, edited by Eaton, A.D., Clesceri, L.S., Franson, M.A.H., Rice, E.W. & Greenberg, A.E. Washington D.C.: American Public Health Association.

Ashraf, M.A., Balkhair, K.S., Chowdhury, A.J.K. & Hanafiah, M.M. 2019. Treatment of Taman Beringin landfill leachate using the column technique. Desalination and Water Treatment 149: 370-387

Bahaa-eldin, E.A.R., Yaacob, W.Z.W., Samsudin, A.R. & Rafek, A.G. 2003. Geoenvironmental sampling: How good is a good practice. Bull. Geol. Soc. Malays. 46: 443-446.

Bahaa-eldin, E.A.R., Yusoff, I., Samsudin, A.R., Yaacob, W.Z.W. & Rafek, A.G. 2010. Deterioration of groundwater quality in the vicinity of an active open-tipping site in West Malaysia. Hydrogeology Journal 18: 997-1006.

Banar, M., Özkan, A. & Kürkçüoğlu, M. 2006. Characterization of the leachate in an urban landfill by physicochemical analysis and solid phase microextraction-GC/MS. Environmental Monitoring and Assessment 121(1-3): 439-459.

Banch, T.J.H., Hanafiah, M.M., Alkarkhi, A.F.M. & Amr, S.A. 2019. Factorial design and optimization of landfill leachate treatment using tannin-based natural coagulant. Polymers 11(8): 1349.

Biswas, A.K., Kumar, S., Babu, S.S., Bhattacharyya, J.K. & Chakrabarti, T. 2010. Studies on environmental quality in and around municipal solid waste dumpsite. Resources, Conservation and Recycling 55(2): 129-134.

Bong, C.P.C., Ho, W.S., Hashim, H., Lim, J.S., Ho, C.S., Tan, W.S.P. & Lee, C.T. 2017. Review on the renewable energy and solid waste management policies towards biogas development in Malaysia. Renewable and Sustainable Energy Reviews 70: 988-998.

Cohen, Y. & Kirchmann, H. 2004. Increasing the pH of wastewater to high levels with different gases -  CO2 stripping. Water, Air & Soil Pollution 159(1): 265-275.

Desa, A., Kadir, N.B. & Yusooff, F. 2011. A study on the knowledge, attitudes, awareness status and behaviour concerning solid waste management. Procedia-Social and Behavioral Sciences 18: 643-648.

Emenike, C.U., Agamuthu, P. & Fauziah, S.H. 2016. Blending Bacillus sp., Lysinibacillus sp. and Rhodococcus sp. for optimal reduction of heavy metals in leachate contaminated soil. Environmental Earth Sciences 75(1): 26.

Esmail, A.S. 2005. Assessment of groundwater pollution in the vicinity of Ampar Tenang landfill site. MSc Thesis. Bangi: Universiti Kebangsaan Malaysia (Unpublished).

Fatta, D., Papadopoulos, A. & Loizidou, M. 1999. A study on the landfill leachate and its impact on the groundwater quality of the greater area. Environmental Geochemistry and Health 21(2): 175-190.

Foo, K.Y. & Hameed, B.H. 2009. An overview of landfill leachate treatment via activated carbon adsorption process. Journal of Hazardous Materials 171(1-3): 54-60.

Huang, S.D., Valsaraj, K.T. & Wilson, D.J. 2006. Removal of refractory organics by aeration. V. Solvent sublation of naphthalene and phenanthrene. Journal Separation Science and Technology 18(10): 941-968.

Ismail, H. & Hanafiah, M.M. 2019a. An overview of LCA application in WEEE management: Current practices, progress and challenges. Journal of Cleaner Production 232: 79-93.

Ismail, H. & Hanafiah, M.M. 2019b. Discovering opportunities to meet the challenges of an effective waste electrical and electronic equipment recycling system in Malaysia. Journal of Cleaner Production 238: 117927.

Jeeva, M. & Umar, H. 2012. Study of leachate migration at Sungai Sedu, Telok Datuk waste disposal site by geophysical and geochemical methods. Sains Malaysiana 41(7): 829-840

Kamaruddin, M.A., Yusoff, M.S., Aziz, H.A. & Basri, N.K. 2013. Removal of COD, ammoniacal nitrogen and colour from stabilized landfill leachate by anaerobic organism. Applied Water Sciences 3(2): 359-366.

Kebria, D.Y., Ghavami, M., Javadi, S. & Goharimanesh, M. 2018. Combining an experimental study and ANFIS modeling to predict landfill leachate transport in underlying soil-A case study in north of Iran. Environmental Monitoring and Assessment 190(1): 26.

Madera-Parra, C.A. & Ríos, D.A. 2017. Constructed wetlands for landfill leachate treatment. In Sustainable Heavy Metal Remediation, edited by Rene, E.R., Sahinkaya, E., Lewis, A. & Lens, P.N.L. Cham: Springer. pp 121-163.

Maiti, S.K., De, S., Hazra, T., Debsarkar, A. & Dutta, A. 2016. Characterization of leachate and its impact on surface and groundwater quality of a closed dumpsite-A case study at Dhapa, Kolkata, India. Procedia Environmental Sciences 35: 391-399.

Manaf, L.A., Samah, M.A. & Zukki, N.I. 2009. Municipal solid waste management in Malaysia: Practices and challenges. Waste Management 29(11): 2902-2906.

Mohamed, A.F., Yaacob, W.W., Taha, M.R. & Samsudin, A.R. 2009. Groundwater and soil vulnerability in the Langat basin Malaysia. European Journal of Scientific Research 27(4): 628-635.

Ngoc, U.N. & Schnitzer, H. 2009. Sustainable solutions for solid waste management in Southeast Asian countries. Waste Management 29(6): 1982-1995.

Rashid, R.I.M., Ibrahim, M.Z., Abdullah, M.A. & Ishak, A.R. 2018. Characterization and toxicity study of leachate from closed landfills in Selangor. Asia Pacific Environmental and Occupational Health Journal 4(2): 16-20.

Razarinah, W.A.R.W., Zalina, M.N. & Abdullah, N. 2015. Utilization of the white-rot fungus, Trametes menziesii for landfill leachate treatment. Sains Malaysiana 44: 309-316.

Rothe, N., Gundermann, K.O. & Jentsch, F. 1988. The pH-dependent solubility of heavy metals from sewage sludge of different compositions. Zentralblatt fur Bakteriologie, Mikrobiologie und Hygiene 187(2): 112-124.

Roy, D., Azaďs, A., Benkaraache, S., Drogui, P. & Tyagi, R.D. 2018. Composting leachate: Characterization, treatment, and future perspectives. Reviews in Environmental Science and BioTechnology 17(2): 323-349.

Salem, Z., Hamouri, K., Djemaa, R. & Allia, K. 2008. Evaluation of landfill leachate pollution and treatment. Desalination 220(1- 3): 108-114.

Taha, M.R., Zuhairi, W., Yaacob, W., Samsudin, A.R. & Yaakob, J. 2011. Groundwater quality at two landfill sites in Selangor, Malaysia. Bulletin of the Geological Society of Malaysia 57: 13-18.

Tzoupanos, N.D. & Zouboulis, A.I. 2009. Characterization and application of novel coagulant reagent (polyaluminium silicate chloride) for the post-treatment of landfill leachates. In Water Treatment Technologies for the Removal of High- Toxicity Pollutants, edited by Václavíková, M., Vitale, K., Gallios, G.P. & Ivanicová, L. Dordrecht: Springer. pp: 247-252.

Weng, H.X., Zhang, F., Zhu, Y.M., Qin, Y.C., Ji, Z.Q. & Cheng, C. 2011. Treatment of leachate from domestic landfills with three-stage physicochemical and biochemical technology. Environmental Earth Sciences 64(6): 1675-1681.

Yusri, Y., Alqaraghuli, W.A. & Alkarkhi, A.F. 2016. Factor analysis and back trajectory of PM and its metal constituents. Environmental Forensics 17(4): 319-337.

Yusup, Y. & Alkarkhi, A.F. 2011. Cluster analysis of inorganic elements in particulate matter in the air environment of an equatorial urban coastal location. Chemistry and Ecology 27(3): 273-286.

 

*Pengarang untuk surat-menyurat; email: mhmarlia@ukm.edu.my

 

 

 

 

sebelumnya