Sains Malaysiana 48(11)(2019): 2405–2413
http://dx.doi.org/10.17576/jsm-2019-4811-11
Sumber Penyumbang Karbon
ke dalam Sedimen Dataran Rumput Laut di Muara Sungai Pulai, Johor,
Malaysia
(Source
Contributors of Carbon to Sediments in the Seagrass Meadows of Sungai Pulai
Estuary, Johor, Malaysia)
NUR HIDAYAH1, MOHAMMAD ROZAIMI1*
& MOHD SHAHRUL MOHD NADZIR1,2
1Center for Earth
Sciences and Environment, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Centre
for Tropical Climate Change System, Institute of Climate Change, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan: 25 Mac
2019/Diterima: 15 Ogos 2019
ABSTRAK
Terdapat banyak kajian
karbon biru yang menggunakan kaedah penjejak isotop untuk mendapatkan
maklumat mengenai sumbangan sumber bahan organik (OM) di dalam sedimen. Objektif
kajian ini terbahagi kepada dua iaitu untuk mengetahui sumbangan
sumber kepada takungan OM dan untuk membandingkan keberkesanan penggunaan dua jenis
isotop stabil (δ13C dan δ15N)
atau satu jenis isotop stabil (δ13C) dalam menentukan sumbangan
OM
di kawasan persampelan. Sampel rumput laut, makroalga,
seston dan epifit di kawasan muara Sungai Pulai dianalisis dan diukur
menggunakan jisim aliran nisbah isotop (IRMS). Analisis isotop stabil melalui
R (SIAR) pula digunakan untuk menganggarkan sumbangan relatif
keempat-empat sumber tersebut kepada takungan OM sedimen.
Sampel seston mencatatkan nilai tertinggi (53 - 98%) dan rumput
laut mencatatkan nilai terendah (7%) dalam sumbangan OM di
dalam sedimen dataran rumput laut. Ini menunjukkan sumber luar (aloktonus)
memainkan peranan yang penting kepada penambahan zarah terampai.
Menggunakan dua penjejak isotop stabil, plot kepadatan menunjukkan
sumbangan yang lebih kecil oleh seston (96.18 - 99.82%) berbanding
menggunakan satu penjejak isotop stabil (89.15 - 99.75%). Terdapat
perbezaan bererti (p<0.05) antara nilai julat peratus kebolehpercayaan
(CI95%) penggunaan dua penjejak isotop stabil (δ13C dan δ15N) dan nilai julat peratus kebolehpercayaan
(CI95%) penggunaan satu penjejak isotop
stabil (δ13C). Hal ini menunjukkan nilai julat peratus kebolehpercayaan
(CI95%) penggunaan dua penjejak isotop stabil lebih kecil iaitu
bermaksud kebolehpercayaan adalah lebih tinggi melalui kaedah ini
dalam pemodelan sumbangan sumber OM di kawasan kajian.
Kata kunci: Bahan
organik; isotop stabil; model pencampuran Bayesian; SIAR
ABSTRACT
There are many blue
carbon studies using isotopic tracer methods to obtain information on the
source contribution of organic materials (OM)
in the sediment. The objectives of this research were to identify the sources
contributing to the sediment OM pool, and to compare the
reliability of using dual stable isotopes (δ13C
and δ15N) or single stable isotope (δ13C)
in determining the source contributions of OM in
the sampling area. Seagrass, macroalgae, seston and epiphyte samples in Sungai
Pulai estuary were analyzed and measured using isotopic ratio mass spectrometry
(IRMS).
The relative contribution of the four sources to the OM pool
sediment was estimated by using Stable Isotope Analysis in R (SIAR).
Seston recorded the highest value (53 - 98%) and seagrass recorded the lowest
value (7%) in OM contribution in the sediments of the seagrass meadow.
This shows that external input (allochthonous) plays an important role in the
addition of suspended particles. By using dual stable isotope tracer, density
plots showed a smaller range of contribution by seston (96.18 - 99.82%) than
using a single tracer (89.15 - 99.75%). There is a significant difference
(p<0.05) between the value of the reliability percentage range (CI95%) using
dual stable isotope tracer (δ13C and δ15N)
than using a single tracer (δ13C). This showed that the
value of the reliability range (CI95%) using dual stable isotope tracer is
smaller and therefore the realibility is higher in the modelling of source
contributions of OM in the study area.
Keywords: Bayesian
mixing model; organic matter; SIAR; stable
isotope
RUJUKAN
Ahmad,
F., Azman, S., Said, M.I.M. & Lavania-Baloo. 2015. Tropical seagrass as a
bioindicator of metal accumulation. Sains Malaysiana 45(1): 203-210.
Ara,
R., Arshad, A., Amin, S.N., Daud, S.K. & Ghaffar, M.A. 2011. Environment
and diversity of ichthyoplankton in the seagrass beds of Sungai Pulai estuary,
Johor, Peninsular Malaysia. Journal of Food, Agriculture and Environment 9(3&4):
733-738.
Arshad,
A., Amin, S.N. & Osman, N. 2010. Population parameters of planktonic
shrimp, Lucifer intermedius (Decapoda: Sergestidae) from Sungai Pulai
Seagrass Area Johor, Peninsular Malaysia. Sains Malaysiana 39(6):
877-882.
Belicka,
L.L. & Harvey, H.R. 2009. The sequestration of terrestrial organic carbon
in arctic ocean sediments: A comparison of methods and implications for
regional carbon budgets. Geochimica et Cosmochimica Acta 73(20): 6231-
6248.
Benstead,
J.P., March, J.G., Fry, B., Ewel, K.C. & Pringle, C.M. 2006. Testing
isosource: Stable isotope analysis of a tropical fishery with diverse organic
matter sources. Ecology 87(2): 326-333.
Bouillon,
S. & Boschker, H.T.S. 2006. Bacterial carbon sources in coastal sediments:
A cross-system analysis based on stable isotope data of biomarkers. Biogeosciences 3(2): 175-185.
Briand,
M.J., Bonnet, X., Goiran, C., Guillou, G. & Letourneur, Y. 2015. Major
sources of organic matter in a complex coral reef lagoon: Identification from
isotopic signatures (δ13C and δ15N). PLoS ONE 10(7): e0131555.
Bulthuis,
D.A. & Woelkerling, W.J. 1983. Biomass accumulation and shading effects of
epiphytes on leaves of the seagrass, Heterozostera Tasmanica, in
Victoria, Australia. Aquatic Botany 16(2): 137-148.
Cob,
Z.C., Arshad, A., Bujang, J.S. & Ghaffar, M.A. 2014. Spatial and temporal
variations in Strombus canarium (Gastropoda: Strombidae) abundance at
Merambong seagrass bed, Malaysia. Sains Malaysiana 43(4): 503-511.
Chen,
G.C., Ulumuddin, Y.I., Pramudji, S., Chen, S.Y., Chen, B., Ye, Y., Ou, D.Y.,
Ma, Z.Y., Huang, H. & Wang, J.K. 2014. Rich soil carbon and nitrogen but
low atmospheric greenhouse gas fluxes from north sulawesi mangrove swamps in
Indonesia. Science of the Total Environment 487: 91-96.
Collins,
A.L., Walling, D.E., Webb, L. & King, P. 2010. Apportioning catchment scale
sediment sources using a modified composite fingerprinting technique
incorporating property weightings and prior information. Geoderma 155(3-
4): 249-261.
Dauby,
P. 1989. The stable carbon isotope ratios in benthic food webs of the Gulf of
Calvi, Corsica. Continental Shelf Research 9(2): 181-195.
De
Troch, M., Gurdebeke, S., Fiers, F. & Vincx, M. 2001. Zonation and
structuring factors of meiofauna communities in a tropical seagrass bed (Gazi
Bay, Kenya). Journal of Sea Research 45(1): 45-61.
Duarte,
C.M. & Cebrián, J. 1996. The fate of marine autotrophic production. Limnology
and Oceanography 41(8): 1758-1766.
Duarte,
C.M., Kennedy, H., Marbà, N. & Hendriks, I. 2013. Assessing the capacity of
seagrass meadows for carbon burial: Current limitations and future strategies. Ocean
and Coastal Management 83: 32-38.
Duarte,
C.M., Marbà, N., Gacia, E., Fourqurean, J.W., Beggins, J., Barrón, C. &
Apostolaki, E.T. 2010. Seagrass community metabolism: Assessing the carbon sink
capacity of seagrass meadows. Global Biogeochemical Cycles 24(4):
GB4032.
Duarte,
C.M., Middelburg, J.J. & Caraco, N. 2005. Major role of marine vegetation
on the oceanic carbon cycle. Biogeosciences 2(1): 1-8.
Fairoz,
M., Rozaimi, M. & Nastasia, W.F. 2018. Records of sea star (Echinodermata,
Asteroidea) diversity in a disturbed tropical seagrass meadow. Arxius de
Miscel·lània Zoològica 16: 243-254.
Folmer,
E.O., van der Geest, M., Jansen, E., Olff, H., Anderson, T.M., Piersma, T.
& van Gils, J.A. 2012. Seagrass-sediment feedback: An exploration using a
non-recursive structural equation model. Ecosystems 15(8): 1380-1393.
Fry,
B. 2013. Alternative approaches for solving underdetermined isotope mixing
problems. Marine Ecology Progress Series 472: 1-13.
Fry,
B. & Sherr, E.B. 1984. δ13C measurements as indicators
of carbon flow in marine and freshwater ecosystems. Contributions in Marine
Science 27: 13-27.
Fry,
B., Scalan, R.S. & Parker, P.L. 1977. Stable carbon isotope evidence for
two sources of organic matter in coastal sediments: Seagrasses and plankton. Geochimica
et Cosmochimica Acta 41(12): 1875-1877.
Gacia,
E. & Duarte, C.M. 2001. Sediment retention by a mediterranean posidonia
oceanica meadow: The balance between deposition and resuspension. Estuarine,
Coastal and Shelf Science 52(4): 505-514.
Gacia, E., Duarte, C.M.
& Middelburg, J.J. 2002. Carbon and nutrient deposition in a mediterranean
seagrass (Posidonia oceanica) meadow. Limnology and Oceanography 47(1):
23-32.
Greiner, J.T.,
Wilkinson, G.M., McGlathery, K.J. & Emery, K.A. 2016. Sources of sediment
carbon sequestered in restored seagrass meadows. Marine Ecology Progress Series 551: 95-105.
Harrison, P.G. 1989.
Detrital processing in seagrass systems: A review of factors affecting decay
rates, remineralization and detritivory. Aquatic Botany 35(3-4):
263-288.
Hidayah, N., Tahirin,
S.A., Fairoz, M. & Rozaimi, M. 2019. Carbon stock and δ13C data of
sediment samples collected from a tropical seagrass meadow in Malaysia. Plant
Science Today 6(2): 132-136.
Hossain, M.S., Hashim,
M., Bujang, J.S., Zakaria, M.H. & Muslim, A.M. 2018. Assessment of the
impact of coastal reclamation activities on seagrass meadows in Sungai Pulai
Estuary, Malaysia, using Landsat data (1994-2017). International Journal of
Remote Sensing 1161: 1-35.
Kadoya, T., Yutaka, O.
& Gaku, T. 2012. Isoweb: A bayesian isotope mixing model for diet analysis
of the whole food web. PLoS ONE 7(7): e41057.
Kennedy, H., Beggins,
J., Duarte, C.M., Fourqurean, J.W., Holmer, M., Marbá, N. & Middelburg,
J.J. 2010. Seagrass sediments as a global carbon sink: Isotopic constraints. Global
Biogeochemical Cycles 24(4): GB4026.
Krull, E., Haynes, D.,
Lamontagne, S., Gell, P., McKirdy, D., Hancock, G., McGowan, J. & Smernik,
R. 2009. Changes in the chemistry of sedimentary organic matter within the
coorong over space and time. Biogeochemistry 92(1-2): 9-25.
Lavery, P.S., Mateo, M.A.,
Serrano, O. & Rozaimi, M. 2013. Variability in the carbon storage of
seagrass habitats and its implications for global estimates of blue carbon
ecosystem service. PLoS ONE 8(9): e73748.
Lee, K.M., Lee, S.Y.
& Connolly, R.M. 2012. Combining process indices from network analysis with
structural population measures to indicate response of estuarine trophodynamics
to pulse organic enrichment. Ecological Indicators 18: 652-658.
Mazarrasa, I., Marbà,
N., Lovelock, C.E., Serrano, O., Lavery, P.S., Fourqurean, J.W., Kennedy, H.,
Mateo, M.A., Krause- Jensen, D., Steven, A.D.L. & Duarte, C.M. 2015.
Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences 12(5): 4107-4138.
Minagawa, M. 1992.
Reconstruction of human diet from Σ13C and Σ15N in contemporary
japanese hair: A stochastic method for estimating multi-source contribution by
double isotopic tracers. Applied Geochemistry 7(2): 145-158.
Neckles, H.A., Wetzel,
R.L. & Orth, R.J. 1993. Relative effects of nutrient enrichment and grazing
on epiphyte-macrophyte (Zostera marina L.) dynamics. Oecologia 93(2): 285-295.
Neundorfer, J.V. &
Kemp, W.M. 1993. Nitrogen versus phosphorus enrichment of brackish waters:
Responses of the submersed plant Potamogeton Perfoliatus and its
associated algal community. Marine Ecology Progress Series 94(1): 71-82.
Parnell, A.C., Inger,
R., Bearhop, S. & Jackson, A.L. 2010. Source partitioning using stable
isotopes: Coping with too much variation. PLoS ONE 5(3): e9672.
Peterson, B.J. 1999.
Stable isotopes as tracers of organic matter input and transfer in benthic food
webs: A review. Acta Oecologica 20(4): 479-487.
Phillips, D.L. 2012.
Converting isotope values to diet composition: The use of mixing models. Journal
of Mammalogy 93(2): 342-352.
Phillips, D.L. &
Gregg, J.W. 2003. Source partitioning using stable isotopes: Coping with too
many sources. Oecologia 136(2): 261-269.
Phillips, D.L., Newsome,
S.D. & Gregg, J.W. 2005. Combining sources in stable isotope mixing models:
Alternative methods. Oecologia 144(4): 520-527.
Reef, R., Feller, I.C.
& Lovelock, C.E. 2014. Mammalian herbivores in Australia transport
nutrients from terrestrial to marine ecosystems via mangroves. Journal
of Tropical Ecology 30(3): 179-188.
Rozaimi, M., Lavery,
P.S., Serrano, O. & Kyrwood, D. 2016. Long-term carbon storage and its
recent loss in an estuarine Posidonia australis meadow (Albany, Western
Australia). Estuarine, Coastal and Shelf Science 171: 58-65.
Schauer, J.J., Rogge,
W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R. & Simoneit, B.R. 1996.
Source apportionment of airborne particulate matter using organic compounds as
tracers. Atmospheric Environment 30(22): 3837-3855.
Serrano, O., Ricart,
A.M., Lavery, P.S., Mateo, M.A., Arias- Ortiz, A., Masque, P., Steven, A. &
Duarte, C.M. 2016. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows. Biogeosciences 13(15): 4581-4594.
Shaari, H., Shazili,
N.A.M., Abdullah, L.I. & Abdullah, N.A. 2017. Geochemistry and clay
minerals of surface sediments of southwestern Johor, Malaysia. Malaysian
Journal of Analytical Science 21(2): 312-322.
Shi, G.W., Mazlan, A.G.,
Md Ali, M. & Che Cob, Z. 2014. The Polychaeta (Annelida)
communities of the Merambong and Tanjung Adang Shoals, Malaysia, and its relationship
with the environmental variables. Malayan Nature Journal 66(1- 2):
168-183.
Short, F.T. &
Frederick, T. 2003. World Atlas of Seagrasses. Volume 41. Berkeley:
University of California Press.
Smit, A.J., Brearley,
A., Hyndes, G.A., Lavery, P.S. & Walker, D.I. 2005. Carbon and nitrogen
stable isotope analysis of an Amphibolis griffithii seagrass bed. Estuarine,
Coastal and Shelf Science 65(3): 545-556.
Stock, B.C. &
Semmens, B.X. 2016. MixSIAR GUI User Manual. Version 3.1: 1-42
https://github.com/brianstock/MixSIAR/. doi: 10.5281/zenodo.47719. Accessed in
October 2013.
van Maren, D.S., Liew,
S.C. & Hasan, G.J. 2014. The role of terrestrial sediment on turbidity near
Singapore’s coral reefs. Continental Shelf Research 76: 75-88.
Watanabe, K. &
Kuwae, T. 2015. How organic carbon derived from multiple sources contributes to
carbon sequestration processes in a shallow coastal system? Global Change
Biology 21(7): 2612-2623.
Zencich, S.J., Froend,
R.H., Turner, J.V. & Gailitis, V. 2002. Influence of groundwater depth on
the seasonal sources of water accessed by Banksia tree species on a shallow,
sandy coastal aquifer. Oecologia 131(1): 8-19.
*Pengarang untuk surat-menyurat;
email: mdrozaimi@ukm.edu.my
|