Sains Malaysiana 48(11)(2019): 2415–2425

http://dx.doi.org/10.17576/jsm-2019-4811-12

 

Kadar Pelepasan Bromokarbon Jangka Hayat Pendek oleh Rumpai Laut Tropika menggunakan Simulasi Laut Tropika

(Release Rates of Very Short-Lived Bromocarbon by Tropical Seaweeds using Tropical Sea Simulation)

 

CHANDRAN RAYNUSHA1, MOHAMMAD ROZAIMI1, NUR HIDAYAH1, KUHAN CHANDRU3,4, WAN SHAFRINA WAN MOHD JAAFAR5, NOOR LIANA MAT YAJIT6 & MOHD SHAHRUL MOHD NADZIR1,2*

 

1Pusat Sains Bumi & Alam Sekitar, Fakulti Sains & Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Pusat Sistem Perubahan Iklim Tropika (IKLIM), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Pusat Sains Angkasa (ANGKASA), Institut Perubahan Iklim, Tingkat 5, Bangunan Kompleks Penyelidikan, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia

 

4Jabatan Kimia Fizikal, Universiti Teknologi Kimia, Prag, Technicka 5, 16628, Prague6- Dejvice, Republik Czech

 

5Pusat Pencerapan Bumi, Institut Perubahan Iklim, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

6Pusat Pengajian Bioteknologi dan Makanan Berfungsi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 1 April 2019/Diterima: 15 Ogos 2019

 

ABSTRAK

Bagi negara tropika yang mempunyai keberhasilan marin yang tinggi seperti Malaysia, makroalga (rumpai laut) telah menjadi penyumbang utama kepada pelepasan bromokarbon jangka hayat pendek (VSL) ke dalam atmosfera. Faktor abiotik seperti keamatan cahaya dan kepekatan klorofil a telah diketahui mempengaruhi pengeluaran bromokarbon oleh rumpai laut, namun begitu masih lagi kurang kajian yang mengukur secara sistematik pengaruh rumpai laut terhadap kadar pelepasan bromokarbon VSL dijalankan. Oleh itu, sistem pengkulturan rumpai laut yang diselaraskan dengan keadaan persekitaran semula jadi disediakan bagi mengkaji kadar pelepasan bromokarbon VSL (CH2Br2, CHBr3 dan CHBr2Cl) bagi tujuh rumpai laut merah, perang dan hijau iaitu Gracilaria changii, Ulva reticulata, Caulerpa racemosa var. macrophysa, Kappaphycus alvarezii, Sargassum binderi, Sargassum siliquosum dan Padina australis. Penghasilan bromokarbon VSL menunjukkan kitaran diurnal dengan kepekatan halokarbon meningkat kepada tahap maksimum pada waktu tengahari (1738 pmolL-1) dan menurun apabila keamatan cahaya dan suhu permukaan laut (SST) berkurang. Penghasilan bromokarbon VSL rumpai laut yang diletakkan di bawah cahaya matahari adalah lima kali ganda lebih tinggi daripada penghasilan tangki akuakultur yang diletakkan dalam persekitaran gelap yang menunjukkan berlakunya penghasilan fotokimia. Purata kadar penghasilan fotokimia untuk bromokarbon VSL daripada uji kaji tangki akuakultur berjulat antara 1 dan 137 pmol per g-1 FW-1 h-1. Ini menjadikan rumpai laut merah (Gracilaria changii) sebagai pengeluar tertinggi. Begitu juga, bromoperoksida (BPO) yang diekstrak daripada kesemua rumpai laut juga menunjukkan aktiviti tertinggi dalam rumpai laut merah diikuti oleh rumpai laut perang dan hijau.

 

Kata kunci: Bahan jangka hayat pendek (VSLS); bromokarbon jangka hayat pendek (VSL); rumpai laut

 

ABSTRACT

Macroalgae (seaweeds) are a major contributor in emitting very short-lived (VSL) bromocarbons into the atmosphere especially in tropical countries with high primary productivity such as Malaysia. Abiotic factors such as light intensities and chlorophyll a concentrations can influence the production of bromocarbons emitted by seaweeds, however, not many studies have systematically quantified their influence on the release rates of VSL bromocarbons. Hence, to measure this, we used a seaweed culture system mimicking a natural environment to study the release rate of VSL bromocarbons (CH2Br2, CHBr3 and CHBr2Cl) for several red, brown and green seaweeds (Gracilaria changii, Ulva reticulata, Caulerpa racemosa var. macrophysa, Kappaphycus alvarezii, Sargassum binderi, Sargassum siliquosum, and Padina australis. The production of VSL bromocarbons showed a diurnal cycle with halocarbon concentrations increasing to a maximum level at mid-day (1738 pmolL-1) and decreasing when light intensity and SST decreased. The production of VSL bromocarbons of seaweeds kept in the sunlight is five times higher than the production of aquaculture tanks placed in dark environments indicating the occurrence of photochemical production. The average photochemical rate for VSL bromocarbons from aquaculture tank experiments ranges from 1 to 137 pmol per g-1 FW-1 h-1. This makes the red seaweeds (Gracilaria changii) as the highest. Likewise, bromoperoxide (BPO) extracted from all seaweeds also showed the highest activity in red seaweed followed by brown and green seaweed.

 

Keywords: Seaweeds; very short-lived (VSL) bromocarbon; very short-lived substances (VSLS)

RUJUKAN

Abrahamsson, K. & Ekdahl, A. 1993. Gas chromatographic determination of halogenated organic compounds in water and sediment in the Skagerrak. Journal of Chromatography A 643(1): 239-248.

Abrahamsson, K., Lorén, A., Wulff, A. & Wängberg, S.Å. 2004. Air-sea exchange of halocarbons: The influence of diurnal and regional variations and distribution of pigments. Deep Sea Research Part II: Topical Studies in Oceanography 51(22-24): 2789-2805.

Abrahamsson, K., Ekdahl, A., Collén, J. & Pedersén, M. 1995. Marine algae-A source of trichloroethylene and perchloroethylene. Limnology and Oceanography 40(7): 1321-1326.

Almeida, M., Filipe, S., Humanes, M., Maia, M.F., Melo, R., Severino, N., Da Silva, J.A.L., da Silva, J.F. & Wever, R. 2001. Vanadium haloperoxidases from brown algae of the Laminariaceae family. Phytochemistry 57(5): 633-642.

Aschmann, J., Sinnhuber, B.M., Atlas, E.L. & Schauffler, S.M. 2009. Modeling the transport of very short-lived substances into the tropical upper troposphere and lower stratosphere. Atmospheric Chemistry and Physics 9(23): 9237-9247.

Auer, N.R., Manzke, B.U. & Schulz-Bull, D.E. 2006. Development of a purge and trap continuous flow system for the stable carbon isotope analysis of volatile halogenated organic compounds in water. Journal of Chromatography A 1131(1): 24-36.

Carpenter, L.J., Malin, G. & Liss, P.S. 2000. Novel biogenic iodine-containing trihalomethanes and other. Global Biogeochemical Cycles 14(4): 1191-1204.

Carpenter, L.J., Reimann, S., Burkholder, J.B., Clerbaux, C., Hall, B.D., Hossaini, R., Laube, J.C. & Yvon-Lewis, S.A. 2014. Update on ozone-depleting substances (ODSs) and other gases of interest to the Montreal Protocol (Chapter 1). In Scientific Assessment of Ozone Depletion: 2014. Geneva: Global Ozone Research and Monitoring Project-Report No. 55, World Meteorological Organization.

Carpenter, L.J., Wevill, D.J., Hopkins, J.R., Dunk, R.M., Jones, C.E., Hornsby, K.E. & McQuaid, J.B. 2007. Bromoform in tropical Atlantic air from 25°N to 25°S. Geophysical Research Letters 34: 1-5.

Collén, J., Ekdahl, A., Abrahamsson, K. & Pedersén, M. 1994. The involvement of hydrogen peroxide in the production of volatile halogenated compounds by Meristiella gelidium. Phytochemistry 36(5): 1197-1202.

Ekdahl, A., Pedersén, M. & Abrahamsson, K. 1998. A study of the diurnal variation of biogenic volatile halocarbons. Marine Chemistry 63(1): 1-8.

Faulkner, D.J. 1980. Natural organohalogen compounds. In The Natural Environment and the Biogeochemical Cycles. The Handbook of Environmental Chemistry, edited by Craig, P.J. Berlin: Springer. p. 251.

Fenical, W. 1975. Halogenation in rhodophyta: A review. Journal of Phycology 11(3): 245-259.

Gschwend, P.M., MacFarlane, J.K. & Newman, K.A. 1985. Volatile halogenated organic compounds released to seawater from temperate marine macroalgae. Science 227(4690): 1033-1035.

Hughes, C. 2001. Oceanic methyl iodide: Production rates, relationship with photosynthetic pigments and biological loss process. MSc Thesis. Dalhousie University (Unpublished).

Itoh, N. & Shinya, M. 1994. Seasonal evolution of bromomethanes from coralline algae (Corallinaceae) and its effect on atmospheric ozone. Marine Chemistry 45(1): 95-103.

Itoh, N., Tsujita, M., Ando, T., Hisatomi, G. & Higashi, T. 1997. Formation and emission of monohalomethanes from marine algae. Phytochemistry 45(1): 67-73.

Jittam, P., Boonsiri, P., Promptmas, C., Sriwattanarothai, N., Archavarungson, N., Ruenwongsa, P. & Panijpan, B. 2009. Red seaweed enzyme-catalyzed bromination of bromophenol red: An inquiry-based kinetics laboratory experiment for undergraduates. Biochemistry and Molecular Biology Education 37(2): 99-105.

Keng, F.S.L., Phang, S.M., Rahman, N.A., Leedham, E.C., Hughes, C., Robinson, A.D., Harris, N.R., Pyle, J.A. & Sturges, W.T. 2013. Volatile halocarbon emissions by three tropical brown seaweeds under different irradiances. Journal of Applied Phycology 25(5): 1377-1386.

Kongkiattikajorn, J. & Pongdam, S. 2006. Vanadium haloperoxidase from the red alga Gracilaria fisheri. ScienceAsia 32(1): 25-30.

Laturnus, F. 1996. Volatile halocarbons released from arctic macroalgae. Marine Chemistry 55(3-4): 359-366.

Laturnus, F., Adams, F. & Wiencke, C. 1998. Methyl halides from antarctic macroalgae. Geophysical Research Letters 25: 773-776.

Leedham, E., Phang, S.M., Sturges, W.T. & Malin, G. 2015. The effect of desiccation on the emission of volatile bromocarbons from two common temperate macroalgae. Biogeosciences 12: 387-398.

Leedham, E., Hughes, C., Keng, F.S.L, Phang, S.M., Malin, G. & Sturges, W.T. 2013. Emission of atmospherically significant halocarbons by naturally occurring and farmed tropical macroalgae. Biogeosciences 10(6): 3615-3633.

Li, H.P., Gong, G.C. & Hsiung, T.M. 2002. Phytoplankton pigment analysis by HPLC and its application in algal community investigations. Botanical Bulletin of Academia Sinica 43: 283-290.

Lim, S.J., Mustapha, W.A.W. & Maskat, M.Y. 2017. Seaweed tea: Fucoidan-rich functional food product development from Malaysian brown seaweed, Sargassum binderi. Sains Malaysiana 46(9): 1573-1579.

Lowry, O.H., Roberts, N.R., Leiner, K.Y., Wu, M.L. & Farr, A.L. 1954. The quantitative histochemistry of brain I. Chemical methods. The Journal of Biological Chemistry 207: 1-18.

Manley, S.L. & Dastoor, M.N. 1988. Methyl Iodide (CH3I) production by kelp and associated microbes. Marine Biology 98(4): 477-482.

Manley, S.L., Goodwin, K. & North, W.J. 2011. Production of bromoform, methylene bromide, and methyl iodide by macroalgae in and distribution nearshore Southern California waters. Limnology 37(8): 1652-1659.

Marra, J. & Heinemann, K. 1982. Photosynthesis response to sunlight variability by phytoplankton. Limnology and Oceanography 27(6): 1141-1153.

Mithoo-Singh, P.K., Keng, F.S.L., Phang, S.M., Elvidge, E.C.L., Sturges, W.T., Malin, G. & Rahman, N.A. 2017. Halocarbon emissions by selected tropical seaweeds: Species-specific and compound-specific responses under changing pH. PeerJ 5: 1-22.

Moore, R.M. & Groszko, W. 1999. Methyl iodide distribution in the ocean and fluxes to the atmosphere. Journal of Geophysical Research 104(C5): 11163-11171.

Nadzir, M.S.M., Phang, S.M., Abas, M.R., Rahman, N.A., Samah, A.A. & Sturges, W.T. 2014. Bromocarbons in the tropical coastal and open ocean atmosphere during the 2009 Prime Expedition Scientific Cruise (PESC-09). Atmospheric Chemistry and Physics 14: 8137-8148.

Nightingale, P.D., Malin, G. & Liss, P.S. 1995. Production of chloroform and other low-molecular-weight halocarbons by some species of macroalgae. Limnology and Oceanography 40(4): 680-689.

Ohshiro, T., Hemrika, W., Aibara, T., Wever, R. & Izumi, Y. 2002. Expression of the vanadium-dependent bromoperoxidase gene from a marine macro-alga Corallina pilulifera in Saccharomyces cerevisiae and characterization of the recombinant enzyme. Phytochemistry 60: 595-601.

Phang, S.M., Keng, F.S.L., Paramjeet-Kaur, M.S., Lim, Y.K., Rahman, N.A., Leedham, E., Robinson, A.D., Harris, N.R.P., Pyle, J.A. & Sturges, W.T. 2015. Can seaweed farming in the tropics contribute to climate change through emission of short-lived halocarbons? Malaysian Journal of Science 34(1): 8-19.

Raimund, S., Quack, B., Bozec, Y., Vernet, M., Rossi, V. & Garc, V. 2011. Sources of short-lived bromocarbons in the Iberian upwelling system. Biogeosciences 8: 1551-1564.

Richter, U. 2003. Factors influencing methyl iodide production in the ocean and its flux to the atmosphere. PhD Thesis. Christian Albrechts University Kiel (Unpublished).

Robinson, A.D., Harris, N.R.P., Ashfold, M.J., Gostlow, B., Warwick, N.J., Brien, L.M.O., Beardmore, E.J., Mohd Shahrul, Mohd Nadzir., Phang, S.M., Samah, A.A., Ong, S., Ung, H.E., Peng, L.K., Yong, S.E., Mohamad, M. & Pyle, J.A. 2014. Long-term halocarbon observations from a coastal and an inland site in Sabah, Malaysian Borneo. Atmospheric Chemistry and Physics 14(16): 8369-8388.

Scarratt, M.G. & Moore, R.M. 1999. Production of chlorinated hydrocarbons and methyl iodide by the red microalga Porphyridium purpureum. Limnology and Oceanography 44(3): 703-707.

Schall, C., Heumann, K.G. & Kirst, G.O. 1997. Biogenic volatile organoiodine and organobromine hydrocarbons in the atlantic ocean from 42°N to 72°S. Fresenius’ Journal of Analytical Chemistry 359(3): 298-305.

Shimonishi, M., Kuwamoto, S., Inoue, H., Wever, R., Ohshiro, T., Izumi, Y. & Tanabe, T. 1998. Cloning and expression of the gene for a vanadium-dependent bromoperoxidase from a marine macro-Alga, Corallina pilulifera. FEBS Letters 428(1-2): 105-110.

Vilter, H. 1995. Vanadium-Dependent Haloperoxidases. In Metal Ions in Biological Systems, edited by Sigel, H. & Sigel, A. Volume 35. New York: Marcel Dekker.

Vogel, T.M., Criddle, C.S. & McCarty, P.L. 1987. ES Critical Reviews: Transformations of halogenated aliphatic compounds. Environmental Science & Technology 21(8): 722-36.

Wever, R. 1988. Ozone destruction by algae in the arctic atmosphere. Nature 335(6190): 501-501.

Wever, R., Barnett, P. & Hemrika, W. 1997. Structure and physiological function of vanadium chloroperoxidase. In Iron and Related Transition Metals in Microbial Metabolism, edited by Winkelman, G. & Carrano, C.J. Amsterdam: Harwood Academic Publishers. pp. 415-433.

Wever, R., Tromp, M.G.M., Krenn, B.E., Marjani, A. & Van Tol, M. 1991. Brominating activity of the seaweed ascophyllum nodosum: Impact on the biosphere. Environmental Science & Technology 25(3): 446-449.

Yip, W.H., Joe, L.S., Mustapha, W.A.W., Maskat, M.Y. & Said, M. 2014. Characterisation and stability of pigments extracted from Sargassum binderi obtained from Semporna, Sabah. Sains Malaysiana 43(9): 1345-1354.

 

*Pengarang untuk surat-menyurat; email: shahrulnadzir@ukm.edu.my

 

 

 

sebelumnya