Sains Malaysiana 48(11)(2019): 2415–2425
http://dx.doi.org/10.17576/jsm-2019-4811-12
Kadar Pelepasan
Bromokarbon Jangka Hayat Pendek oleh Rumpai Laut Tropika menggunakan Simulasi
Laut Tropika
(Release Rates of Very
Short-Lived Bromocarbon by Tropical Seaweeds using Tropical Sea Simulation)
CHANDRAN RAYNUSHA1, MOHAMMAD ROZAIMI1, NUR HIDAYAH1, KUHAN CHANDRU3,4, WAN SHAFRINA WAN MOHD JAAFAR5, NOOR LIANA MAT YAJIT6 & MOHD SHAHRUL MOHD NADZIR1,2*
1Pusat
Sains Bumi & Alam Sekitar, Fakulti Sains & Teknologi, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat
Sistem Perubahan Iklim Tropika (IKLIM), Institut Perubahan Iklim, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
3Pusat
Sains Angkasa (ANGKASA), Institut Perubahan Iklim, Tingkat 5, Bangunan Kompleks
Penyelidikan, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul
Ehsan, Malaysia
4Jabatan
Kimia Fizikal, Universiti Teknologi Kimia, Prag, Technicka 5, 16628, Prague6-
Dejvice, Republik Czech
5Pusat
Pencerapan Bumi, Institut Perubahan Iklim, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
6Pusat
Pengajian Bioteknologi dan Makanan Berfungsi, Fakulti Sains dan Teknologi,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
1 April 2019/Diterima: 15 Ogos 2019
ABSTRAK
Bagi negara tropika yang
mempunyai keberhasilan marin yang tinggi seperti Malaysia, makroalga
(rumpai laut) telah menjadi penyumbang utama kepada pelepasan bromokarbon
jangka hayat pendek (VSL) ke dalam atmosfera. Faktor abiotik
seperti keamatan cahaya dan kepekatan klorofil a telah diketahui mempengaruhi pengeluaran bromokarbon oleh rumpai
laut, namun begitu masih lagi kurang kajian yang mengukur secara
sistematik pengaruh rumpai laut terhadap kadar pelepasan bromokarbon
VSL
dijalankan. Oleh itu, sistem pengkulturan rumpai laut
yang diselaraskan dengan keadaan persekitaran semula jadi disediakan
bagi mengkaji kadar pelepasan bromokarbon VSL
(CH2Br2,
CHBr3 dan CHBr2Cl) bagi tujuh rumpai laut merah,
perang dan hijau iaitu Gracilaria changii, Ulva reticulata,
Caulerpa racemosa var. macrophysa, Kappaphycus alvarezii,
Sargassum binderi, Sargassum siliquosum dan Padina australis.
Penghasilan bromokarbon VSL menunjukkan
kitaran diurnal dengan kepekatan halokarbon meningkat kepada tahap
maksimum pada waktu tengahari (1738 pmolL-1) dan menurun apabila keamatan
cahaya dan suhu permukaan laut (SST) berkurang. Penghasilan bromokarbon
VSL rumpai laut yang diletakkan di bawah cahaya matahari
adalah lima kali ganda lebih tinggi daripada penghasilan tangki
akuakultur yang diletakkan dalam persekitaran gelap yang menunjukkan
berlakunya penghasilan fotokimia. Purata kadar penghasilan fotokimia
untuk bromokarbon VSL
daripada uji kaji tangki akuakultur berjulat antara
1 dan 137 pmol per g-1 FW-1
h-1.
Ini menjadikan rumpai laut merah (Gracilaria changii) sebagai
pengeluar tertinggi. Begitu juga, bromoperoksida (BPO) yang diekstrak daripada kesemua
rumpai laut juga menunjukkan aktiviti tertinggi dalam rumpai laut
merah diikuti oleh rumpai laut perang dan hijau.
Kata kunci: Bahan
jangka hayat pendek (VSLS); bromokarbon jangka hayat pendek
(VSL);
rumpai laut
ABSTRACT
Macroalgae (seaweeds)
are a major contributor in emitting very short-lived (VSL)
bromocarbons into the atmosphere especially in tropical countries
with high primary productivity such as Malaysia. Abiotic factors
such as light intensities and chlorophyll a concentrations can influence the production
of bromocarbons emitted by seaweeds, however, not many studies have
systematically quantified their influence on the release rates of
VSL bromocarbons. Hence, to measure this, we used a seaweed culture
system mimicking a natural environment to study the release rate
of VSL bromocarbons
(CH2Br2, CHBr3 and
CHBr2Cl) for several red, brown and green seaweeds (Gracilaria
changii, Ulva reticulata, Caulerpa racemosa var. macrophysa,
Kappaphycus alvarezii, Sargassum binderi, Sargassum siliquosum,
and Padina australis. The production of VSL bromocarbons showed a diurnal cycle with halocarbon
concentrations increasing to a maximum level at mid-day (1738 pmolL-1)
and decreasing when light intensity and SST decreased. The production
of VSL bromocarbons of seaweeds kept in the sunlight is five
times higher than the production of aquaculture tanks placed in
dark environments indicating the occurrence of photochemical production.
The average photochemical rate for VSL bromocarbons from aquaculture tank
experiments ranges from 1 to 137 pmol per g-1 FW-1
h-1.
This makes the red seaweeds (Gracilaria changii) as the highest.
Likewise, bromoperoxide (BPO) extracted from all seaweeds also
showed the highest activity in red seaweed followed by brown and
green seaweed.
Keywords: Seaweeds;
very short-lived (VSL) bromocarbon;
very short-lived substances (VSLS)
RUJUKAN
Abrahamsson, K. & Ekdahl, A. 1993. Gas chromatographic
determination of halogenated organic compounds in water and sediment in the
Skagerrak. Journal of Chromatography A 643(1): 239-248.
Abrahamsson,
K., Lorén, A., Wulff, A. & Wängberg, S.Å. 2004. Air-sea exchange of
halocarbons: The influence of diurnal and regional variations and distribution
of pigments. Deep Sea Research Part II: Topical Studies in Oceanography 51(22-24):
2789-2805.
Abrahamsson,
K., Ekdahl, A., Collén, J. & Pedersén, M. 1995. Marine algae-A source of
trichloroethylene and perchloroethylene. Limnology and Oceanography 40(7):
1321-1326.
Almeida,
M., Filipe, S., Humanes, M., Maia, M.F., Melo, R., Severino, N., Da Silva,
J.A.L., da Silva, J.F. & Wever, R. 2001. Vanadium haloperoxidases from
brown algae of the Laminariaceae family. Phytochemistry 57(5): 633-642.
Aschmann,
J., Sinnhuber, B.M., Atlas, E.L. & Schauffler, S.M. 2009. Modeling the
transport of very short-lived substances into the tropical upper troposphere
and lower stratosphere. Atmospheric Chemistry and Physics 9(23):
9237-9247.
Auer,
N.R., Manzke, B.U. & Schulz-Bull, D.E. 2006. Development of a purge and trap
continuous flow system for the stable carbon isotope analysis of volatile
halogenated organic compounds in water. Journal of Chromatography A 1131(1):
24-36.
Carpenter,
L.J., Malin, G. & Liss, P.S. 2000. Novel biogenic iodine-containing
trihalomethanes and other. Global Biogeochemical Cycles 14(4):
1191-1204.
Carpenter,
L.J., Reimann, S., Burkholder, J.B., Clerbaux, C., Hall, B.D., Hossaini, R.,
Laube, J.C. & Yvon-Lewis, S.A. 2014. Update on ozone-depleting substances
(ODSs) and other gases of interest to the Montreal Protocol (Chapter 1). In Scientific
Assessment of Ozone Depletion: 2014. Geneva: Global Ozone Research and
Monitoring Project-Report No. 55, World Meteorological Organization.
Carpenter,
L.J., Wevill, D.J., Hopkins, J.R., Dunk, R.M., Jones, C.E., Hornsby, K.E. &
McQuaid, J.B. 2007. Bromoform in tropical Atlantic air from 25°N to 25°S. Geophysical
Research Letters 34: 1-5.
Collén,
J., Ekdahl, A., Abrahamsson, K. & Pedersén, M. 1994. The involvement of
hydrogen peroxide in the production of volatile halogenated compounds by Meristiella
gelidium. Phytochemistry 36(5): 1197-1202.
Ekdahl,
A., Pedersén, M. & Abrahamsson, K. 1998. A study of the diurnal variation
of biogenic volatile halocarbons. Marine Chemistry 63(1): 1-8.
Faulkner,
D.J. 1980. Natural organohalogen compounds. In The Natural Environment and
the Biogeochemical Cycles. The Handbook of Environmental Chemistry, edited
by Craig, P.J. Berlin: Springer. p. 251.
Fenical,
W. 1975. Halogenation in rhodophyta: A review. Journal of Phycology 11(3):
245-259.
Gschwend,
P.M., MacFarlane, J.K. & Newman, K.A. 1985. Volatile halogenated organic
compounds released to seawater from temperate marine macroalgae. Science 227(4690):
1033-1035.
Hughes,
C. 2001. Oceanic methyl iodide: Production rates, relationship with
photosynthetic pigments and biological loss process. MSc Thesis. Dalhousie
University (Unpublished).
Itoh,
N. & Shinya, M. 1994. Seasonal evolution of bromomethanes from coralline
algae (Corallinaceae) and its effect on atmospheric ozone. Marine Chemistry 45(1):
95-103.
Itoh,
N., Tsujita, M., Ando, T., Hisatomi, G. & Higashi, T. 1997. Formation and
emission of monohalomethanes from marine algae. Phytochemistry 45(1):
67-73.
Jittam,
P., Boonsiri, P., Promptmas, C., Sriwattanarothai, N., Archavarungson, N.,
Ruenwongsa, P. & Panijpan, B. 2009. Red seaweed enzyme-catalyzed
bromination of bromophenol red: An inquiry-based kinetics laboratory experiment
for undergraduates. Biochemistry and Molecular Biology Education 37(2):
99-105.
Keng,
F.S.L., Phang, S.M., Rahman, N.A., Leedham, E.C., Hughes, C., Robinson, A.D.,
Harris, N.R., Pyle, J.A. & Sturges, W.T. 2013. Volatile halocarbon
emissions by three tropical brown seaweeds under different irradiances. Journal
of Applied Phycology 25(5): 1377-1386.
Kongkiattikajorn,
J. & Pongdam, S. 2006. Vanadium haloperoxidase from the red alga Gracilaria
fisheri. ScienceAsia 32(1): 25-30.
Laturnus,
F. 1996. Volatile halocarbons released from arctic macroalgae. Marine Chemistry 55(3-4): 359-366.
Laturnus,
F., Adams, F. & Wiencke, C. 1998. Methyl halides from antarctic
macroalgae. Geophysical Research Letters 25: 773-776.
Leedham,
E., Phang, S.M., Sturges, W.T. & Malin, G. 2015. The effect of desiccation
on the emission of volatile bromocarbons from two common temperate macroalgae. Biogeosciences 12: 387-398.
Leedham,
E., Hughes, C., Keng, F.S.L, Phang, S.M., Malin, G. & Sturges, W.T. 2013.
Emission of atmospherically significant halocarbons by naturally occurring and
farmed tropical macroalgae. Biogeosciences 10(6): 3615-3633.
Li,
H.P., Gong, G.C. & Hsiung, T.M. 2002. Phytoplankton pigment analysis by
HPLC and its application in algal community investigations. Botanical
Bulletin of Academia Sinica 43: 283-290.
Lim,
S.J., Mustapha, W.A.W. & Maskat, M.Y. 2017. Seaweed tea: Fucoidan-rich
functional food product development from Malaysian brown seaweed, Sargassum
binderi. Sains Malaysiana 46(9): 1573-1579.
Lowry,
O.H., Roberts, N.R., Leiner, K.Y., Wu, M.L. & Farr, A.L. 1954. The
quantitative histochemistry of brain I. Chemical methods. The Journal of
Biological Chemistry 207: 1-18.
Manley,
S.L. & Dastoor, M.N. 1988. Methyl Iodide (CH3I) production by kelp and
associated microbes. Marine Biology 98(4): 477-482.
Manley,
S.L., Goodwin, K. & North, W.J. 2011. Production of bromoform, methylene
bromide, and methyl iodide by macroalgae in and distribution nearshore Southern
California waters. Limnology 37(8): 1652-1659.
Marra,
J. & Heinemann, K. 1982. Photosynthesis response to sunlight variability by
phytoplankton. Limnology and Oceanography 27(6): 1141-1153.
Mithoo-Singh,
P.K., Keng, F.S.L., Phang, S.M., Elvidge, E.C.L., Sturges, W.T., Malin, G.
& Rahman, N.A. 2017. Halocarbon emissions by selected tropical seaweeds:
Species-specific and compound-specific responses under changing pH. PeerJ 5:
1-22.
Moore,
R.M. & Groszko, W. 1999. Methyl iodide distribution in the ocean and fluxes
to the atmosphere. Journal of Geophysical Research 104(C5): 11163-11171.
Nadzir,
M.S.M., Phang, S.M., Abas, M.R., Rahman, N.A., Samah, A.A. & Sturges, W.T.
2014. Bromocarbons in the tropical coastal and open ocean atmosphere during the
2009 Prime Expedition Scientific Cruise (PESC-09). Atmospheric
Chemistry and Physics 14: 8137-8148.
Nightingale, P.D.,
Malin, G. & Liss, P.S. 1995. Production of chloroform and other
low-molecular-weight halocarbons by some species of macroalgae. Limnology
and Oceanography 40(4): 680-689.
Ohshiro, T., Hemrika,
W., Aibara, T., Wever, R. & Izumi, Y. 2002. Expression of the
vanadium-dependent bromoperoxidase gene from a marine macro-alga Corallina
pilulifera in Saccharomyces cerevisiae and characterization of the
recombinant enzyme. Phytochemistry 60: 595-601.
Phang, S.M., Keng,
F.S.L., Paramjeet-Kaur, M.S., Lim, Y.K., Rahman, N.A., Leedham, E., Robinson,
A.D., Harris, N.R.P., Pyle, J.A. & Sturges, W.T. 2015. Can seaweed farming
in the tropics contribute to climate change through emission of short-lived
halocarbons? Malaysian Journal of Science 34(1): 8-19.
Raimund, S., Quack, B.,
Bozec, Y., Vernet, M., Rossi, V. & Garc, V. 2011. Sources of short-lived
bromocarbons in the Iberian upwelling system. Biogeosciences 8:
1551-1564.
Richter, U. 2003.
Factors influencing methyl iodide production in the ocean and its flux to the
atmosphere. PhD Thesis. Christian Albrechts University Kiel (Unpublished).
Robinson, A.D., Harris,
N.R.P., Ashfold, M.J., Gostlow, B., Warwick, N.J., Brien, L.M.O., Beardmore,
E.J., Mohd Shahrul, Mohd Nadzir., Phang, S.M., Samah, A.A., Ong, S., Ung, H.E.,
Peng, L.K., Yong, S.E., Mohamad, M. & Pyle, J.A. 2014. Long-term halocarbon
observations from a coastal and an inland site in Sabah, Malaysian Borneo. Atmospheric
Chemistry and Physics 14(16): 8369-8388.
Scarratt, M.G. &
Moore, R.M. 1999. Production of chlorinated hydrocarbons and methyl iodide by
the red microalga Porphyridium purpureum. Limnology and Oceanography 44(3):
703-707.
Schall, C., Heumann,
K.G. & Kirst, G.O. 1997. Biogenic volatile organoiodine and organobromine
hydrocarbons in the atlantic ocean from 42°N to 72°S. Fresenius’ Journal of
Analytical Chemistry 359(3): 298-305.
Shimonishi, M.,
Kuwamoto, S., Inoue, H., Wever, R., Ohshiro, T., Izumi, Y. & Tanabe, T.
1998. Cloning and expression of the gene for a vanadium-dependent
bromoperoxidase from a marine macro-Alga, Corallina pilulifera. FEBS
Letters 428(1-2): 105-110.
Vilter, H. 1995. Vanadium-Dependent
Haloperoxidases. In Metal Ions in Biological Systems, edited by
Sigel, H. & Sigel, A. Volume 35. New York: Marcel Dekker.
Vogel, T.M., Criddle,
C.S. & McCarty, P.L. 1987. ES Critical Reviews: Transformations of
halogenated aliphatic compounds. Environmental Science & Technology 21(8):
722-36.
Wever, R. 1988. Ozone
destruction by algae in the arctic atmosphere. Nature 335(6190):
501-501.
Wever, R., Barnett, P. &
Hemrika, W. 1997. Structure and physiological function of vanadium
chloroperoxidase. In Iron and Related Transition Metals in Microbial
Metabolism, edited by Winkelman, G. & Carrano, C.J. Amsterdam: Harwood
Academic Publishers. pp. 415-433.
Wever, R., Tromp,
M.G.M., Krenn, B.E., Marjani, A. & Van Tol, M. 1991. Brominating activity
of the seaweed ascophyllum nodosum: Impact on the biosphere. Environmental
Science & Technology 25(3): 446-449.
Yip, W.H., Joe, L.S.,
Mustapha, W.A.W., Maskat, M.Y. & Said, M. 2014. Characterisation and
stability of pigments extracted from Sargassum binderi obtained from
Semporna, Sabah. Sains Malaysiana 43(9): 1345-1354.
*Pengarang
untuk surat-menyurat; email: shahrulnadzir@ukm.edu.my
|