Sains Malaysiana 48(11)(2019): 2541–2549
http://dx.doi.org/10.17576/jsm-2019-4811-24
Thermal Effect on
Mechanical Characteristics of Drinking Water Sludge Brick Incorporated with
Rice Husk Ash
(Kesan Suhu terhadap
Cirian Mekanik Bata Sisa Rawatan Air Campuran Abu Sekam Padi)
ZULFAHMI ALI RAHMAN*, NOR MAISALHAH MOHD SALEH, WAN MOHD RAZI IDRIS
& TUKIMAT LIHAN
Center for Earth
Sciences and Environment, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
Diserahkan:
21 Mac 2019/Diterima: 15 Ogos 2019
ABSTRACT
Brick is among the
important construction materials and commonly manufactured from mixtures of
clay or sand, lime and cement. Due to limited natural resources for raw
materials and highly demand for brick in construction industry have gradually
increased the market price of each unit. Therefore, alternative sources are
required such utilization of drinking water sludge (DWS)
and rice husk ash (RHA) are potentially used as base
and/or incorporated materials for manufacturing alternative brick. In this
study, the brick samples which had been developed from mixtures of DWS and RHA (D80 brick) were subjected to different firing temperatures of
300oC and 500oC. The results of this study
were compared to that of unfired brick and bricks which developed from 100% DWS content
(D100 brick). The result also shows the volume shrinkage significantly
increased at firing temperature of 500oC and was more apparently
affected the D100 brick if compared to that of D80 brick. As firing
temperatures were increased, the density of both brick samples decreased with
D100 brick more prominent than D80 brick. The effect of temperature on the
water absorption and compressive strength clearly increased especially for the
D80 bricks, respectively. The effect of temperature is closely related to the
presence of rice husk ash as this organic matter destroyed at high firing
temperature of 500oC. The results obtained in this study
suggested that firing temperature can modify and enhance the studied mechanical
characteristics.
Keywords: Brick;
compressive strength; shrinkage; sludge; temperature
ABSTRAK
Bata adalah antara
bahan binaan yang penting dan sering dihasilkan daripada campuran liat atau
pasir, kapur dan simen. Akibat daripada terhadnya sumber semula jadi sebagai
bahan mentah dan permintaan yang tinggi bagi bata di dalam industri pembinaan
menyebabkan peningkatan harga pasaran setiap unit bata. Oleh itu, sumber
alternatif diperlukan seperti penggunaan sisa perawatan air minuman (DWS)
dan abu sekam padi (RHA) adalah berpotensi digunakan
sebagai asas dan/atau bahan tambahan bagi penghasilan bata alternatif tersebut.
Kajian ini menggunakan sampel bata yang dihasilkan daripada campuran DWS dan RHA (D80) telah dibakar pada suhu 300oC
dan 500oC. Hasil kajian ini dibandingkan dengan bata tanpa bakar
dan bata yang dihasilkan daripada 100% kandungan DWS (D100).
Hasil kajian juga menunjukkan pengecutan isi padu meningkat dengan suhu bakaran
500ºC dan kesannya lebih ketara terhadap bata D100 berbanding bata D80. Kesan
suhu terhadap penyerap air dan kekuatan mampatan masing-masing jelas meningkat
bagi bata D80. Kesan suhu sangat berkait terhadap kehadiran abu sekam padi
memandangkan bahan organik ini musnah pada suhu yang tinggi 500oC.
Hasil daripada kajian ini mencadangkan bahawa suhu bakaran boleh mengubah suai
dan meningkatkan cirian mekanik yang dikaji.
Kata kunci: Bata;
kekuatan mampatan; pengecutan; sisa; suhu
RUJUKAN
Ahmad
Rusmili, S.H., Yuliati, L. & Ramli, Z. 2012. Rapid synthesis and
characterization of nanosodalite synthesized using rice husk ash. The
Malaysian Journal of Analytical Sciences 16(3): 247-255.
Ali
Rahman, Z., Sulaiman, N., Rahim, S.A., Idris, W.M.R. & Lihan, T. 2016.
Effect of cement additive and curing period on some engineering properties of
treated peat soil. Sains Malaysiana 45(11): 1679-1687.
Ali
Rahman, Z., Mat Noradin, M., Abdul Rahim, S., Idris, W.M.R. & Lihan, T.
2015. Some mechanical characteristics of brick developed from drinking water
sludge (DWS) and admixture of rice husk ask (RHA). Proceeds. National
Geoscience Conference 2015. Perdana Hotel, Kota Bharu Kelantan, 31 July - 1
August 2015. pp. 166-168.
ANSI/AN-16.1-2003
(American Nuclear Society). Measurement of the leachability of solidified
low-level radioactive wastes by a short-term test procedure, Illinois.
Anyokora,
N.V., Ajinomoh, C.S., Ahmed, A.S., Mohammed- Dabo, I.A., Ibrahim, J. &
Anton, J.B. 2012. Microstructural and chemical characterization of water works
sludge for resource utilization. WEEJS International Journal of Arts and
Combined Sciences 3(1): 1-5.
Abu
Bakar, H., Ibrahim, M.H.W. & Johari, M.A.M. 2011. Durability of fired clay
brick masonry wall due to salt attack. International Journal of Integrated
Engineering (Issue on Civil and Environmental Engineering) pp. 111-127.
Arman
Ali, Z. 2005. Properties of Malaysian fired clay brick and their evaluation
with the mansory specifications-A case study. MSc Thesis. Universiti Teknologi
Malaysia (Unpublished).
Basha,
E.A., Hashim, R., Mahmud, H.B. & Muntohar, A.S. 2005. Stabilization of
residual soil with rice husk ash and cement. Construction and Building
Materials 19: 448-453.
Breesem,
K.M., Faris, F.G. & Abdel-Magid, I.M. 2014. Reuse of alum sludge in
construction materials and concrete works: A general overview. IUKL Research
Journal 2(1): 20-30.
BS
EN 772-1. 2011. Methods of Test for Masonry Units. Determination of
Compressive Strength. (London: British Standard). pp. 1-18.
British
Standards Institution, 1985. British Standard Specification for Clay Bricks.
London, BS 3921.
Chiang,
K.Y., Chou, P.H., Hua, C.R., Chien, K.L. & Cheeseman, C. 2009. Lightweight
bricks manufactured from water treatment sludge and rice husk. Journal of
Hazardous Materials 171: 76-82.
Chindaprasirt,
P., Kanchanda, P., Sathonsaowaphak, A. & Cao, H.T. 2007. Sulfate resistance
of blended cements containing fly ash and rice husk ash. Construction and
Building Materials 21: 1356-1361.
Cultrone,
G. & Sebastian, E. 2009. Fly ash addition in clayey materials to improve
the quality of solid bricks. Construction and Building Materials 23:
1178-1184.
da
Fonseca, A.V., Cruz, R.C. & Consoli, N.C. 2009. Strength properties of
sandy soil-cement admixtures. Geotechnical & Geological Engineering 27:
681-686.
Demir,
I. 2008. Effect of organic residues addition on the technological properties of
clay bricks. Waste Management 28(3): 622-627.
Denise
Alves Fungaro, D.A. & Valério da Silva, M. 2014. Utilization of water
treatment plant sludge and coal fly ash in brick manufacturing. American
Journal of Environmental Protection 2(5): 83-88.
Dunster,
A. & Petavrati, E. 2007. Water treatment residues as a clay replacement and
colorant in facing brick. Characterisation of Mineral Wastes, Resources and
Processing Technologies-Integrated Waste Management for the Production of
Construction Material. Funded by Defra. pp. 1-9.
Dutre,
V. & Vandecasteele, C. 1995. Solidification/stabilization of
arsenic-containing waste: Leach tests and behaviour of arsenic in the leachate. Waste Management 15(1): 55-62.
Eberemu,
A.O., Osinubi, K.J. & Oyelakin, M.A. 2011. Improvement of black cotton soil
with ordinary Portland cement-locust bean waste ash blended. EJGE 16(2011):
619-627.
Fernando,
P.R. 2017. Experimental investigation of the effect of fired clay brick on
partial replacement of rice husk ash (RHA) with brick clay. Advances in
Recycling & Waste Management 2(1): 1-4.
Fungaro,
D.A. & Silva, M.V.D. 2014. Utilization of water treatment plant sludge and
coal fly ash in brick manufacturing. American Journal of Environmental
Protection 2(5): 83-88.
Hegazy,
B.E.E., Fouad, H.A. & Hassanain, A.M. 2012. Incorporation of water sludge,
silica fume and rice husk ash in brick making. Advances in Environmental
Research 1(1): 83-96.
Hendry,
A.W., Sinha, B.P. & Davies S.R. 1981. An Introduction to Load Bearing
Brickwork Design. U.K.: Ellis Horwood Limited.
Hwang,
C.L. & Huynh, T.P. 2015. Properties of unfired building bricks prepared from
fly ash and residual rice husk ash. Applied Mechanics and Materials 754-755:
468-472.
Ismail,
H., Shamsudin, R., Abdul Hamid, M.A. & Jalar, A. 2013. Synthesis and
characterization of nano-wollastonite from rice husk ash and limestone. Material
Science Forum 756: 43-47.
Jabatan
Perangkaan Malaysia. 2015. Siaran Akhbar: Siaran Khas untuk Kerja-Kerja
Pembinaan Bangunan dan Struktur Mac 2015. Pejabat Ketua Perangkaan Malaysia
10 April 2015.
Johari,
I., Putra, J.R., Said, S. & Abu Bakar, B.H. 2011. Chemical and physical
properties of fired-clay brick at different type of rice husk ash. International
Conference on Environmental Science and Engineering 8: 171-174.
Jordan,
J.W. 2001. Factors in the selection of mortar for conservation of historic
masonry. 6th Australasian Masonry Conference, Adelaide, Australia.
Kadir,
A.A. & Mohajerani, A. 2011. Bricks: An excellent building material for
recycling wastes - A review. International Conference on Environmental
Management and Engineering (EME 2011), July 2011, Canada.
Kartini,
K., Mahmud, B.H. & Hamidah, M.S. 2008. Improvement on mechanical properties
of rice husk ash concrete with superplasticizer. International Conference on
Construction and Building Technology ICCBT. pp. 221-230.
Khan,
M.N.N., Jamil, M., Karim, M.R., Zain, M.F.M. & Kaish, A.B.M.A. 2015.
Utilization of rice husk ash for sustainable construction:
A review. Research Journal of Applied Sciences, Engineering and Technology 9(12):
1119-1127.
Krishnan, P. &
Jewaratnam, J. 2017. Recovery of water treatment residue into clay bricks. Chemical
Engineering Transactions 56: 1837-1842. DOI: 103303/CET1756307.
Kumar, R. & Hooda,
N. 2014. An experimental study on properties of fly ash bricks. International
Journal of Research in Aeronautical and Mechanical Engineering 2(9): 2321-
3051.
Madurwar, M.V.,
Ralegaonkar, R.V. & Mandavgane, S.A. 2012. Application of agro-waste for
sustainable construction materials: A review. Construction and Building
Materials 38(1): 872-878.
Malik, S. & Arora,
B. 2015. Effect of fly ash and rice husk ash on the properties of burnt clay
bricks. International Journal of Innovative Research in Computer Science
& Technology 3(4): 19-21.
MS 76. 1972. Specification
for Bricks and Blocks of Fired Brick Earth, Clay or Shale (Selangor:
Malaysian Standard). pp. 1-74.
Mohan, N.V.,
Satyanarayama, P.V.V. & Rao, K.S. 2012. Performance of rice husk ash
bricks. International Journal of Engineering Research and Applications 2(5):
1906-1910.
Obilade, I. 2014. Use of
rice husk ash as partial replacement for cement in concrete. International
Journal of Engineering 5(4): 715-725.
Palanisamy, V. 2011.
Utilization of textile effluent waste sludge in brick production. International
Journal of Sciences: Basic and Applied Research 4(1): 1-10.
Ramadan, M.O., Fouad,
H.A. & Hassanain, A.M. 2008. Reuse of water treatment plant sludge in brick
manufacturing. Journal of Applied Sciences Research 4(10): 1223-1229.
Rodrigues, L.P. &
Holanda, J.N.F. 2013. Characterization of waterworks waste for use in
soil-cement bricks. Advances in Ceramic Science and Engineering (ACSE) 2:
135-140.
Saleh, A.M., Rahmat,
M.T., Mohd Yusoff, F.N. & Eddirizal, N.E. 2011. Utilization of palm oil
fuel ash and rice husks in unfired bricks for sustainable construction
materials development. MATEC Web of Conferences 15: 101032.
Singh, T.S. & Pant,
K.K. 2006. Solidification/stabilization of arsenic containing solid waste using
Portland cement, fly ash and polymeric materials. Journal of Hazardous Materials 131: 29-36.
Suruhanjaya Perkhidmatan
Air Negara (SPAN). 2010. Malaysia Water Service Industry and Water Treatment
Sludge Issues. Malaysia-Japan Economic Partnership Program. 4 October 2014.
Sutas, J., Mana, A.
& Pitak, L. 2012. Effect of rice husk and rice husk ash to properties of
bricks. Procedia Engineering 32: 1061-1067.
Tonnayopas, D.,
Tekasakul, P. & Jaritgnam, S. 2008. Effects of rice husk ash on
characteristics of lightweight clay brick. Conference of Technology and
Innovation for Sustainable Development (TISD2008), Khon Kaen University,
Thailand, 28-29 January.
Tsega, E., Mosisa, A.
& Fufa, F. 2017. Effects of firing time and temperature on physical
properties of fired clay bricks. American Journal of Civil Engineering 5(1):
21-26.
USEPA 1996. Hazardous
Waste Characteristics Scoping Study. US Environmental Protection Agency,
Office of Solid Waste.
Weng, C.H., Lin, D.F.
& Chiang, P.C. 2003. Utilization of sludge as brick materials. Advances
in Environmental Research 7(3): 679-685.
Wong, S.F., Deekamwong,
K., Wittikayun, J., Ling, T.C., Muzara, O., Lee, H.L., Adam, F. & Ng, E.P.
2018. Nanocrystalline K-F zeolite from rice husk silica as an eco-friendly
solid base catalyst for the synthesis of jasminaldehyde under microwave
irradiation. Sains Malaysiana 47(2): 337-345.
Yadav, S., Agnihotri,
S., Gupta, S. & Tripathi, R.K. 2014. Incorporation of STP sludge and fly
ash in brick manufacturing: An attempt to save the environment. International
Journal of Advancements in Research & Technology 3(5): 138-144.
Yoshizawa, S., Tanaka,
M. & Shekhar, A.V. 2004. Global Trends in Waste Generation. Recycling,
Waste Treatment and Clean Technology. Spain: TMS Minerals, Metals and
Materials Publishers. p. 1541-1552 (II).
Young, D. 1995. Rising
Damp and Salt Attack. Australia: Department of Environment and Natural
Resource.
*Pengarang
untuk surat-menyurat; email: zarah1970@ukm.edu.my
|