Sains Malaysiana 48(11)(2019): 2575–2581

http://dx.doi.org/10.17576/jsm-2019-4811-27

 

The Indian Mackerel Aggregation Areas in Relation to Their Oceanographic Conditions

(Perkaitan Kawasan Pengumpulan Ikan Kembung India dan Keadaan Oseanografi)

 

YENY NADIRA, K.1,2, MUSTAPHA, M.A.1,3* & GHAFFAR, M.A.2

 

1Centre for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21300 Kuala Terengganu, Terengganu Darul Iman, Malaysia

 

3Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 15 April 2019/Diterima: 15 Ogos 2019

 

ABSTRACT

In order to determine the favourable oceanographic conditions which influence fish aggregation areas, the integration of remote sensing and GIS technique was applied. This paper aims to classify the spatial distribution and abundance of R. kanagurta in the South China Seas (SCS) using principal component analysis (PCA) and cluster analysis (CA). Remotely-sensed satellite oceanographic data of chlorophyll-a concentration (chl-a), sea surface temperature (SST) and sea surface height (SSH) together with high catch fish data were used to characterize seasonal abundance of the R. kanagurta. PCA identified two principal components that had eigenvalues >1 (PC1 and PC2) which accounted for 59.3% of the cumulative variance. Factor loading in the PCA proved that all environmental variables used in this study; chl-a (PC1), SSH and SST (PC2) had influenced the CPUE of R. kanagurta. Using CA, two clusters of CPUE abundance were identified. In cluster 1, an average CPUE of 350.7 kg/m³ with highest catch were recorded in January, April, May, July and October. Meanwhile, in cluster 2, an average CPUE of 1033.9 kg/m³ with highest catch were recorded in April, May, September and October. Preferred range for fish aggregations showed SST, SSH and chl-a were observed in between 29-31°C, 1.12-1.28 m and 0.24-0.42 mg/m3, respectively. Binary habitat suitability index was used to model the potential aggregation areas. The highest potential fish aggregations areas of R. kanagurta were found located along the coast of Peninsular Malaysia in early and late Southwest monsoon (at accuracy of 83.68% with kappa of 0.7).

 

Keywords: Chlorophyll-a; fish aggregation areas; Rastrelliger kanagurta; sea surface height; sea surface temperature

 

ABSTRAK

Integrasi antara data penderiaan jauh dan teknik GIS diaplikasi bagi menentukan keadaan oseanografi yang mempengaruhi kawasan pengumpulan ikan. Objektif dalam kajian ini adalah untuk mengkelaskan taburan reruang dan kelimpahan R. kanagurta di Laut China Selatan menggunakan analisis komponen prinsipal (PCA) dan analisis kelompok (CA) serta mengenal pasti perhubungan antara taburan ikan dengan keadaan persekitaran. Hubungan antara data taburan klorofil-a (chl-a), suhu permukaan laut (SST) dan ketinggian permukaan laut (SSH) daripada satelit penderiaan jauh serta taburan tangkapan R. kanagurta digunakan untuk mengenal pasti hubungan taburan musiman ikan pelagik. PCA mengenal pasti dua komponen prinsipal yang mempunyai nilai eigen >1 (PC1 dan PC2) dengan nilai peratus kumulatif varians adalah 59.3%. Faktor penentuan dalam komponen prinsipal menunjukkan bahawa parameter persekitaran mempengaruhi data tangkapan ikan. CA menunjukkan dua kelompok tangkapan ikan dengan kelompok 1, nilai purata tangkapan ikan sebanyak 350.7 kg/m³ dengan catatan tangkapan ikan tertinggi pada bulan Januari, April, Mei, Julai, September dan Oktober. Manakala, di dalam kelompok 2, nilai purata tangkapan ikan sebanyak 1033.9 kg/m³ dengan catatan tangkapan ikan tertinggi pada bulan April, Mei, September dan Oktober. Julat kesesusaian cerapan pengumpulan ikan bagi SST, SSH dan chl-a didapati pada suhu 29-31°C, 1.12-1.28 m dan 0.24-0.42 mg/m³. Kawasan berpotensi bagi pengumpulan R. kanagurta yang dimodel menggunakan indeks kesesuaian habitat mendapati kawasan pengumpulan R. kanagurta paling berpotensi terletak di sepanjang perairan pantai Semenanjung Malaysia pada permulaan dan akhir musim monsun barat daya (pada ketepatan 83.68% dengan nilai kappa 0.7).

 

Kata kunci: Kawasan pengumpulan ikan; ketinggian permukaan laut; klorofil-a; Rastrelliger kanagurta; suhu permukaan laut

RUJUKAN

Akhir, M.F. 2014. Review of current circulation studies in the Southern South Shina Sea. Journal of Sustainability Science and Management 9(2): 21-30.

Akhir, M.F., Daryabor, F., Husain, M.L., Tangang, F. & Qiao, F. 2015. Evidence of upwelling along Peninsular Malaysia during Southwest monsoon. Open Journal of Marine Science 5: 273-279.

Andrade, H.A. & Garcia, C.A.E. 1999. Skipjack tuna fishery in relation to sea surface temperature off the southern Brazillian coast. Fisheries Oceanography 8(4): 245-254.

Anon. 1976. Plankton, fish eggs and larvae studies. UNDP/FAO Pelagic Fishery Project (IND/69/593). Progress Report No. 17. p. 27.

Bradley, P. & Fayyad, U. 1998. Refining initial points for k-means clustering. Proc. 15th International Conf. on Machine Learning.

Chandran, R.V., Jeyaram, A., Jayaraman, V., Manoj, S., Rajitha, K. & Mukherjee, C.K. 2009. Prioritization of satellite derived potential fishery grounds: An analytical hierarchical approach-based model using spatial and non-spatial data. International Journal of Remote Sensing 30(17): 4479-4491.

Chassot, E., Bonhommeau, S., Reygondeau, G., Nieto, K., Polovina, J.J., Huret, M., Dulvy, N.K. & Demarcq, H. 2011. Satellite remote sensing for an ecosystem approach to fisheries management. ICES Journal of Marine Science 68: 651-666.

Collette, B.B. & Russo, J.L. 1984. Morphology, systematics and biology of the Spanish mackerels (Scomberomous, Scombridae). Fish Bulletin US 82: 545-692.

Fang, W. & Fang, G. 1998. The recent progress in the study of the Southern South China Sea circulation. Advance in Earth Sciences 13(2): 166-172.

Frontier, S. 1976. Étude de la decroissance des valeurs propers dans une analyze en composantes principals comparison avec le modèle de baton brisé. J. Exp. Mar. Biol. Ecol. 25: 67-75.

Gambang, A.C., Ramli, H.B. & Awang, D. 2003. Overview of biology and exploitation of the small pelagic fish resources of the EEZ of Sarawak, Malaysia. National Fisheries Symposium, Kota Bharu, Kelantan.

Grim, J., Novovicova, J., Pudil, P., Somol, P. & Ferri, F. 1998. Initialization normal mixtures of densities. Proc. Int’l Conf. Pattern Recognition (ICPR 1998).

Guttman, L. 1954. A new approach to factor analysis: The radex. In Mathematical Thinking in the Social Sciences, edited by Lazarsfeld, P.F. Glencoe: The Free Press.

Jackson, D.A. 1993. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 74: 2204-2214.

Jolliffe, I.T. 1986. Principal Component Analysis. New York: Springer-Verlag.

Lanz, E., Manuel, N.M., Juana, L.M. & Dworak, J.A. 2009. Small pelagic fish catches in the Gulf of California associated with sea surface temperature and chlorophyll. CalCOFI Report 50: 134-146.

Laevastu, T. & Hayes, M.L. 1981. Fisheries Oceanography and Ecology. Oxford: Fishing News.

Legendre, P. & Legendre, L.F. 1998. Paper presented at the Numerical Ecology, Amsterdam, Netherlands.

Mansor, M. 1989. Tumbesaran, kematian dan corak pengrekrutan Ikan Kembung Rastrelliger kanagurta (Cuvier) di Pantai Barat Semenanjung Malaysia. Fisheries Bulletin 59 (Jabatan Perikanan: Kementerian Pertanian Malaysia). p. 22.

Mansor, M., Abdullah, S. & Hamid, A. 1996. Population structure of small pelagic fisheries off the East Coast of Peninsular Malaysia. Fisheries Bulletin 99 (Jabatan Perikanan: Kementerian Pertanian Malaysia), 30.

MMD. 2016. Malaysian Meteorological Department. http://www. met.gov.my/web/metmalaysia/climate/generalinformation/ malaysia.

Mohsin, K.M. & Mohamed, M.I. 1988. Ekspedisi Matahari’ 87: A Study on the Offshore Waters of the Malaysian EEZ. Occasional Publication No. 8. Universiti Pertanian Malaysia.

Moore, A. 1998. Very fast em-based mixture model clustering using multiresolution kd-trees. Proc. Neural Info. Processing Systems (NIPS 1998).

Nishida, T., Miyashita, K. & Lyne, H. 1999. Spatial dynamics of sothern bluefin tuna recruitment. Proceeding of the First International Symposium on GIS in Fishery Sciences, Seattle.

Nurdin, S., Mustapha, M.A., Lihan, T. & Tangang, F. 2017a. Spatial and temporal variability of the chlorophyll-a concentration in Makassar Strait using Empirical Orthogonal Function analysis of satellite images. Indian Journal of Geo Marine Sciences 46(07): 1381-1389.

Nurdin, S., Mustapha, M.A., Lihan, T. & Zainuddin, M. 2017b. Applicability of remote sensing oceanographic data in the detection of potential fishing grounds of Rastrelliger kanagurta in the archipelagic waters of Spermonde, Indonesia. Fisheries Research 196: 1-12.

Nurdin, S., Mustapha, M.A. & Lihan, T. 2014. The relationship between sea surface temperature and chlorophyll-a concentration in fisheries aggregation area in the archipelagic waters of spermonde using satellite images. The 2013 UKM FST Postgraduate Colloquium, UKM.

Pena, H., Gonzalez, C. & Vejar, F. 1999. Study of spatial dynamics of Jack Mackerel fishing grounds and environmental conditions using GIS. Proceeding of The First International Symposium on GIS in Fishery Sciences, Seattle.

Polovina, J.J. & Howell, E.A. 2005. Ecosystem indicators derived from satellite remotely sensed oceanographic data for the North Pacific. ICES Journal of Marine Science 62: 31-27.

Rebert, J.P., Donguy, J.R., Elidin, G. & Wyrtki, K. 1985. Relations between sea level, thermocline depth, heat content and dynamic height in the tropical Pacific Ocean. Journal Geophysical Research 90: C611719-C611725.

Shaari, N.R. & Mustapha, M.A. 2018. Predicting potential Rastrelliger kanagurta fish habitat using MODIS data and GIS Modelling: A case study of Exclusive Economic Zone, Malaysia. Sains Malaysiana 47(7): 1369-1378.

Shaari, F. & Mustapha, M.A. 2017. Factors influencing the distribution of Chl-a along Coastal Waters of East Peninsular Malaysia. Sains Malaysiana 46(8): 1191-1200.

Skjoldal, H.R. 2004. Fish stocks and fisheries in relation to climate variability and exploitation natural resource system challenge: Ocean and aquatic ecosystem. In Encyclopedia of Life Supporting System (EOLSS), developed under the auspices of the UNESCO, Oxford, UK.

Solanki, H.U., Dwivedi, R.M., Nayak, S.R., Naik, S.K., John, M.E. & Somvanshi, V.S. 2005. Cover: Application of remotely sensed closely coupled biological and physical process for marine fishery resources exploration. International Journal of Remote Sensing 26(10): 2029-2034.

Solanki, H.U., Dwivedi, R.M. & Nayak, S.R. 2001. Synergistic analysis of SeaWiFS chlorophyll concentration and NOAA-AVHRR SST features for exploring marine living resources. International Journal of Remote Sensing 22: 3877-3882.

Suhaila, J. & Jemain, A.A. 2009. A comparison of the rainfall patterns between stations on the East and the West Coasts of Peninsular Malaysia using the smoothing model of rainfall amounts. Meteorol. Appl. 16(3): 391-401.

Susanto, R.D., Moore, T.S. & Marra, J. 2006. Ocean color variability in the Indonesian seas during the SeaWiFS era. Geochem. Geophy. Geosy. 7(5): 1-16.

Tang, D.L. & Kawamura, H. 2002. Ocean color monitoring of coastal environments in the Asian waters. Journal Korea Society Oceanography 37: 154-159.

Vasconcelos, R.P., Le Pape, O., Costa, M.J. & Cabral, H.N. 2013. Predicting estuarine use patterns of juvenile fish with Generalized Linear Models. Estuar. Coast. Shelf Sci. 120: 64-74. http://dx.doi.org/10.1016/j.ecss.2013.01.018.

Wilson, C. 2011. The rocky road from research to operations for satellite ocean-color data in fishery management. ICES Journal of Marine Science 68(4): 677-686.

Wyrtki, K. 1961. Physical oceanography of the Southeast Asian waters. NAGA Report Vol. 2. Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand 1959-1961. The University of California, Scripps Institution of Oceanography, La Jolla, California. pp. 1-195.

Xie, S.P., Xie, Q., Wang, D. & Liu, W.T. 2003. Summer upwelling in the South China Sea and its role in regional climate variations. Journal of Geophysical Research 108(C8): 3261.

Xian, T., Sun, L., Yang, Y. & Fu, Y. 2012. Monsoon and eddy forcing of Chlorophyll-a variation in the Northeast South China Sea. International Journal of Remote Sensing 33(23): 7431-7443.

Yahaya, N.A.Z., Musa, T.A., Omar, K.M., Din, A.H.M., Omar, A.H., Tugi, A. & Wahab, M.I.A. 2016. Mean Sea Surface (MSS) Model determination for Malaysian Seas using Multi- Mission Satellite Altimeter. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume XLII-4/W1. International Conference on Geomatic and Geospatial Technology (GGT). pp. 3-5.

Yanagi, T., Sachoemar, S.I., Takao, T. & Fujiwara, S. 2001. Seasonal variation of stratification in the Gulf of Thailand. Journal of Oceanography 57: 461-470.

Yusop, S.M. & Mustapha, M.A. 2019. Influence of oceanographic parameters on the seasonal potential fishing grounds of Rastrelliger kanagurta using maximum entropy models and remotely sensed data. Sains Malaysiana 48(2): 259-269.

Zagaglia, C.Z., Lorenzzetti, J.A. & Stech, J.L. 2004. Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic. Remote Sensing of Environment 93(1-2): 267-281.

Zainuddin, M. 2007. Mapping of potential fishing grounds of Rastrelliger kanagurta in Bantaeng waters, South Sulawesi. Jurnal Sains dan Teknologi 7(2): 57-64.

Zainuddin, M., Saitoh, K. & Saitoh, S.I. 2008. Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data. Fisheries Oceanography 17(2): 61-73.

Zheng, X., Pierce, G.J. & Reid, D.G. 2001. Spatial patterns of Whiting abundance in Scottish waters and relationship with environmental variables. Fisheries Research 50: 259-270.

 

*Pengarang untuk surat-menyurat; email: muzz@ukm.edu.my

 

 

 

 

 

sebelumnya