Sains Malaysiana 48(11)(2019): 2575–2581
http://dx.doi.org/10.17576/jsm-2019-4811-27
The Indian Mackerel
Aggregation Areas in Relation to Their Oceanographic Conditions
(Perkaitan Kawasan
Pengumpulan Ikan Kembung India dan Keadaan Oseanografi)
YENY NADIRA, K.1,2, MUSTAPHA, M.A.1,3*
& GHAFFAR, M.A.2
1Centre
for Earth Sciences and Environment, Faculty of Science and Technology, Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2School
of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21300
Kuala Terengganu, Terengganu Darul Iman, Malaysia
3Institute
of Climate Change, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor
Darul Ehsan, Malaysia
Diserahkan: 15
April 2019/Diterima: 15 Ogos 2019
ABSTRACT
In order to determine
the favourable oceanographic conditions which influence fish aggregation areas,
the integration of remote sensing and GIS technique was applied. This
paper aims to classify the spatial distribution and abundance of R. kanagurta in the South China Seas (SCS)
using principal component analysis (PCA) and cluster analysis (CA).
Remotely-sensed satellite oceanographic data of chlorophyll-a concentration
(chl-a), sea surface temperature (SST) and sea surface height (SSH)
together with high catch fish data were used to characterize seasonal abundance
of the R. kanagurta. PCA identified two principal
components that had eigenvalues >1 (PC1 and PC2)
which accounted for 59.3% of the cumulative variance. Factor loading in the PCA proved
that all environmental variables used in this study; chl-a (PC1), SSH and SST (PC2)
had influenced the CPUE of R. kanagurta. Using CA,
two clusters of CPUE abundance were identified. In
cluster 1, an average CPUE of 350.7 kg/m³ with highest catch
were recorded in January, April, May, July and October. Meanwhile, in cluster
2, an average CPUE of 1033.9 kg/m³ with highest catch were recorded in
April, May, September and October. Preferred range for fish aggregations showed SST, SSH and chl-a were observed in between 29-31°C, 1.12-1.28 m
and 0.24-0.42 mg/m3, respectively. Binary habitat
suitability index was used to model the potential aggregation areas. The
highest potential fish aggregations areas of R. kanagurta were found
located along the coast of Peninsular Malaysia in early and late Southwest
monsoon (at accuracy of 83.68% with kappa of 0.7).
Keywords: Chlorophyll-a; fish aggregation areas; Rastrelliger kanagurta; sea
surface height; sea surface temperature
ABSTRAK
Integrasi antara data penderiaan
jauh dan teknik GIS diaplikasi bagi menentukan keadaan
oseanografi yang mempengaruhi kawasan pengumpulan ikan. Objektif
dalam kajian ini adalah untuk mengkelaskan taburan reruang dan kelimpahan
R.
kanagurta di Laut China Selatan menggunakan analisis komponen
prinsipal (PCA)
dan analisis kelompok (CA) serta mengenal pasti perhubungan
antara taburan ikan dengan keadaan persekitaran. Hubungan antara
data taburan klorofil-a (chl-a), suhu permukaan laut
(SST)
dan ketinggian permukaan laut (SSH) daripada satelit penderiaan
jauh serta taburan tangkapan R. kanagurta digunakan untuk
mengenal pasti hubungan taburan musiman ikan pelagik. PCA mengenal pasti dua komponen
prinsipal yang mempunyai nilai eigen >1 (PC1
dan PC2) dengan nilai peratus kumulatif varians adalah 59.3%.
Faktor penentuan dalam komponen prinsipal menunjukkan bahawa parameter
persekitaran mempengaruhi data tangkapan ikan. CA menunjukkan
dua kelompok tangkapan ikan dengan kelompok 1, nilai purata tangkapan
ikan sebanyak 350.7 kg/m³ dengan catatan tangkapan ikan tertinggi
pada bulan Januari, April, Mei, Julai, September dan Oktober. Manakala,
di dalam kelompok 2, nilai purata tangkapan ikan sebanyak 1033.9
kg/m³ dengan catatan tangkapan ikan tertinggi pada bulan
April, Mei, September dan Oktober. Julat kesesusaian cerapan pengumpulan
ikan bagi SST,
SSH
dan chl-a didapati pada suhu 29-31°C, 1.12-1.28
m dan 0.24-0.42 mg/m³. Kawasan berpotensi bagi pengumpulan R.
kanagurta yang dimodel menggunakan indeks kesesuaian habitat
mendapati kawasan pengumpulan R. kanagurta paling berpotensi
terletak di sepanjang perairan pantai Semenanjung Malaysia pada
permulaan dan akhir musim monsun barat daya (pada ketepatan 83.68%
dengan nilai kappa 0.7).
Kata kunci: Kawasan
pengumpulan ikan; ketinggian permukaan laut; klorofil-a; Rastrelliger
kanagurta; suhu permukaan laut
RUJUKAN
Akhir, M.F. 2014. Review of current circulation studies in the Southern
South Shina Sea. Journal of Sustainability Science and Management
9(2): 21-30.
Akhir, M.F., Daryabor, F., Husain, M.L., Tangang, F. & Qiao,
F. 2015. Evidence of upwelling along Peninsular Malaysia during Southwest
monsoon. Open Journal of Marine Science 5: 273-279.
Andrade, H.A. & Garcia, C.A.E. 1999. Skipjack tuna fishery in
relation to sea surface temperature off the southern Brazillian coast. Fisheries
Oceanography 8(4): 245-254.
Anon. 1976. Plankton, fish eggs and larvae studies. UNDP/FAO
Pelagic Fishery Project (IND/69/593). Progress Report No. 17. p. 27.
Bradley, P. & Fayyad, U. 1998. Refining initial points for
k-means clustering. Proc. 15th International Conf. on Machine Learning.
Chandran, R.V., Jeyaram, A., Jayaraman, V., Manoj, S., Rajitha, K.
& Mukherjee, C.K. 2009. Prioritization of satellite derived potential
fishery grounds: An analytical hierarchical approach-based model using spatial
and non-spatial data. International Journal of Remote Sensing 30(17): 4479-4491.
Chassot, E., Bonhommeau, S., Reygondeau, G., Nieto, K., Polovina,
J.J., Huret, M., Dulvy, N.K. & Demarcq, H. 2011. Satellite remote sensing
for an ecosystem approach to fisheries management. ICES Journal of Marine
Science 68: 651-666.
Collette, B.B. & Russo, J.L. 1984. Morphology, systematics and
biology of the Spanish mackerels (Scomberomous, Scombridae). Fish
Bulletin US 82: 545-692.
Fang, W. & Fang, G. 1998. The recent progress in the study of
the Southern South China Sea circulation. Advance in Earth Sciences 13(2):
166-172.
Frontier, S. 1976. Étude de la decroissance des valeurs propers
dans une analyze en composantes principals comparison avec le modèle de baton
brisé. J. Exp. Mar. Biol. Ecol. 25: 67-75.
Gambang, A.C., Ramli, H.B. & Awang, D. 2003. Overview of
biology and exploitation of the small pelagic fish resources of the EEZ of
Sarawak, Malaysia. National Fisheries Symposium, Kota Bharu, Kelantan.
Grim, J., Novovicova, J., Pudil, P., Somol, P. & Ferri, F.
1998. Initialization normal mixtures of densities. Proc. Int’l Conf. Pattern
Recognition (ICPR 1998).
Guttman, L. 1954. A new approach to factor analysis: The radex. In Mathematical Thinking in the Social Sciences, edited by Lazarsfeld, P.F.
Glencoe: The Free Press.
Jackson, D.A. 1993. Stopping rules in principal components
analysis: A comparison of heuristical and statistical approaches. Ecology 74:
2204-2214.
Jolliffe, I.T. 1986. Principal Component Analysis. New
York: Springer-Verlag.
Lanz, E., Manuel, N.M., Juana, L.M. & Dworak, J.A. 2009. Small
pelagic fish catches in the Gulf of California associated with sea surface
temperature and chlorophyll. CalCOFI Report 50: 134-146.
Laevastu, T. & Hayes, M.L. 1981. Fisheries Oceanography and
Ecology. Oxford: Fishing News.
Legendre, P. & Legendre, L.F. 1998. Paper presented at the Numerical
Ecology, Amsterdam, Netherlands.
Mansor, M. 1989. Tumbesaran, kematian dan corak pengrekrutan Ikan
Kembung Rastrelliger kanagurta (Cuvier) di Pantai Barat Semenanjung
Malaysia. Fisheries Bulletin 59 (Jabatan Perikanan: Kementerian
Pertanian Malaysia). p. 22.
Mansor, M., Abdullah, S. & Hamid, A. 1996. Population
structure of small pelagic fisheries off the East Coast of Peninsular Malaysia. Fisheries Bulletin 99 (Jabatan Perikanan: Kementerian Pertanian
Malaysia), 30.
MMD. 2016. Malaysian Meteorological Department. http://www.
met.gov.my/web/metmalaysia/climate/generalinformation/ malaysia.
Mohsin, K.M. & Mohamed, M.I. 1988. Ekspedisi Matahari’ 87: A
Study on the Offshore Waters of the Malaysian EEZ. Occasional Publication No.
8. Universiti Pertanian Malaysia.
Moore, A. 1998. Very fast em-based mixture model clustering using
multiresolution kd-trees. Proc. Neural Info. Processing Systems (NIPS
1998).
Nishida, T., Miyashita, K. & Lyne, H. 1999. Spatial dynamics
of sothern bluefin tuna recruitment. Proceeding of the First International
Symposium on GIS in Fishery Sciences, Seattle.
Nurdin, S., Mustapha, M.A., Lihan, T. & Tangang, F. 2017a.
Spatial and temporal variability of the chlorophyll-a concentration in
Makassar Strait using Empirical Orthogonal Function analysis of satellite
images. Indian Journal of Geo Marine Sciences 46(07): 1381-1389.
Nurdin, S., Mustapha, M.A., Lihan, T. & Zainuddin, M. 2017b.
Applicability of remote sensing oceanographic data in the detection
of potential fishing grounds of Rastrelliger kanagurta in
the archipelagic waters of Spermonde, Indonesia. Fisheries Research
196: 1-12.
Nurdin,
S., Mustapha, M.A. & Lihan, T. 2014. The relationship between sea surface
temperature and chlorophyll-a concentration in fisheries aggregation
area in the archipelagic waters of spermonde using satellite images. The
2013 UKM FST Postgraduate Colloquium, UKM.
Pena,
H., Gonzalez, C. & Vejar, F. 1999. Study of spatial dynamics of Jack
Mackerel fishing grounds and environmental conditions using GIS. Proceeding
of The First International Symposium on GIS in Fishery Sciences, Seattle.
Polovina,
J.J. & Howell, E.A. 2005. Ecosystem indicators derived from satellite
remotely sensed oceanographic data for the North Pacific. ICES Journal of
Marine Science 62: 31-27.
Rebert,
J.P., Donguy, J.R., Elidin, G. & Wyrtki, K. 1985. Relations between sea
level, thermocline depth, heat content and dynamic height in the tropical
Pacific Ocean. Journal Geophysical Research 90: C611719-C611725.
Shaari,
N.R. & Mustapha, M.A. 2018. Predicting potential Rastrelliger kanagurta fish
habitat using MODIS data and GIS Modelling: A case study of Exclusive Economic
Zone, Malaysia. Sains Malaysiana 47(7): 1369-1378.
Shaari,
F. & Mustapha, M.A. 2017. Factors influencing the distribution of Chl-a along
Coastal Waters of East Peninsular Malaysia. Sains Malaysiana 46(8):
1191-1200.
Skjoldal,
H.R. 2004. Fish stocks and fisheries in relation to climate variability and
exploitation natural resource system challenge: Ocean and aquatic ecosystem. In Encyclopedia of Life Supporting System (EOLSS), developed under the
auspices of the UNESCO, Oxford, UK.
Solanki,
H.U., Dwivedi, R.M., Nayak, S.R., Naik, S.K., John, M.E. & Somvanshi, V.S.
2005. Cover: Application of remotely sensed closely coupled biological and
physical process for marine fishery resources exploration. International
Journal of Remote Sensing 26(10): 2029-2034.
Solanki,
H.U., Dwivedi, R.M. & Nayak, S.R. 2001. Synergistic analysis of SeaWiFS
chlorophyll concentration and NOAA-AVHRR SST features for exploring marine
living resources. International Journal of Remote Sensing 22: 3877-3882.
Suhaila,
J. & Jemain, A.A. 2009. A comparison of the rainfall patterns between
stations on the East and the West Coasts of Peninsular Malaysia using the
smoothing model of rainfall amounts. Meteorol. Appl. 16(3): 391-401.
Susanto,
R.D., Moore, T.S. & Marra, J. 2006. Ocean color variability in the
Indonesian seas during the SeaWiFS era. Geochem. Geophy. Geosy. 7(5):
1-16.
Tang,
D.L. & Kawamura, H. 2002. Ocean color monitoring of coastal environments in
the Asian waters. Journal Korea Society Oceanography 37: 154-159.
Vasconcelos, R.P., Le Pape, O., Costa, M.J. & Cabral, H.N. 2013.
Predicting estuarine use patterns of juvenile fish with Generalized
Linear Models. Estuar. Coast.
Shelf Sci. 120: 64-74. http://dx.doi.org/10.1016/j.ecss.2013.01.018.
Wilson,
C. 2011. The rocky road from research to operations for satellite
ocean-color data in fishery management. ICES Journal of Marine
Science 68(4): 677-686.
Wyrtki,
K. 1961. Physical oceanography of the Southeast Asian waters. NAGA Report
Vol. 2. Scientific Results of Marine Investigations of the South China
Sea and the Gulf of Thailand 1959-1961. The University of California,
Scripps Institution of Oceanography, La Jolla, California. pp. 1-195.
Xie,
S.P., Xie, Q., Wang, D. & Liu, W.T. 2003. Summer upwelling in the South
China Sea and its role in regional climate variations. Journal of
Geophysical Research 108(C8): 3261.
Xian,
T., Sun, L., Yang, Y. & Fu, Y. 2012. Monsoon and eddy forcing of
Chlorophyll-a variation in the Northeast South China Sea. International
Journal of Remote Sensing 33(23): 7431-7443.
Yahaya,
N.A.Z., Musa, T.A., Omar, K.M., Din, A.H.M., Omar, A.H., Tugi, A. & Wahab,
M.I.A. 2016. Mean Sea Surface (MSS) Model determination for Malaysian Seas
using Multi- Mission Satellite Altimeter. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences. Volume
XLII-4/W1. International Conference on Geomatic and Geospatial Technology (GGT).
pp. 3-5.
Yanagi,
T., Sachoemar, S.I., Takao, T. & Fujiwara, S. 2001. Seasonal variation of
stratification in the Gulf of Thailand. Journal of Oceanography 57:
461-470.
Yusop,
S.M. & Mustapha, M.A. 2019. Influence of oceanographic parameters on the
seasonal potential fishing grounds of Rastrelliger kanagurta using maximum
entropy models and remotely sensed data. Sains Malaysiana 48(2):
259-269.
Zagaglia,
C.Z., Lorenzzetti, J.A. & Stech, J.L. 2004. Remote sensing data and
longline catches of yellowfin tuna (Thunnus albacares) in the equatorial
Atlantic. Remote Sensing of Environment 93(1-2): 267-281.
Zainuddin,
M. 2007. Mapping of potential fishing grounds of Rastrelliger kanagurta in
Bantaeng waters, South Sulawesi. Jurnal Sains dan Teknologi 7(2): 57-64.
Zainuddin,
M., Saitoh, K. & Saitoh, S.I. 2008. Albacore (Thunnus alalunga)
fishing ground in relation to oceanographic conditions in the western North
Pacific Ocean using remotely sensed satellite data. Fisheries Oceanography 17(2):
61-73.
Zheng,
X., Pierce, G.J. & Reid, D.G. 2001. Spatial patterns of Whiting abundance
in Scottish waters and relationship with environmental variables. Fisheries
Research 50: 259-270.
*Pengarang untuk surat-menyurat;
email: muzz@ukm.edu.my
|