Sains Malaysiana 49(10)(2020): 2443-2451

http://dx.doi.org/10.17576/jsm-2020-4910-10

 

Kesan Gelembung Udara dan Auksin bagi Penginduksian Akar pada Tunas Arundina graminifolia dalam Sistem Rendaman Berterusan Tertutup

(Effects of Air Bubbles and Auxin on Root Induction of Arundina graminifolia Shoots in Close Permanent Immerse System)

 

SAKINAH IDRIS1, CHE RADZIAH CHE MOHD. ZAIN1* & AB. KAHAR SANDRANG2

 

1Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Pusat Penyelidikan Hortikultur, Ibu Pejabat MARDI, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 25 September 2019/Diterima: 9 Mei 2020

 

ABSTRAK

Arundina graminifolia atau orkid buluh adalah orkid yang hidup di atas tanah, tahan panas dan penyakit, mudah dijaga, berbunga sepanjang tahun dan sangat sesuai untuk dijadikan tanaman landskap di kawasan terbuka. Kebiasaannya, A. graminifolia dibiak melalui pembahagian rumpun dan kultur tisu. Kadar pembiakan daripada kaedah ini adalah sangat rendah dan mengambil masa yang lama untuk memperbanyakkan bahan tanaman. Penggunaan sistem rendaman berterusan tertutup (CPIS) telah berjaya mempercepatkan penginduksian mata tunas A. graminifolia. Namun, penginduksian akar mengambil masa yang agak lama iaitu melebihi tiga bulan. Oleh yang demikian, kajian ini bertujuan untuk menambahbaik sistem CPIS dengan menambah gelembung udara bagi mempercepatkan penginduksian akar pada tunas A. graminifolia. Seterusnya, penggunaan auksin asid naftalenasetik (NAA) dan asid indol-3-butirik (IBA) bagi meningkatkan peratus pengakaran pada tunas A. graminifolia turut dijalankan. Kehadiran gelembung udara di dalam sistem CPIS menunjukkan terdapat peningkatan yang signifikan untuk kelebaran, ketinggian dan kerenggangan mata tunas berbanding dengan CPIS tanpa kehadiran gelembung udara. Tunas yang terhasil dalam sistem CPIS dengan kehadiran gelembung udara juga mampu menghasilkan akar (10% tunas yang berakar) berbanding dengan sistem CPIS tanpa kehadiran gelembung udara yang langsung tidak menghasilkan akar. Penginduksian akar pada tunas A. graminifolia menggunakan IBA dan NAA dengan kepekatan 0, 0.5, 1.0 dan 1.5 ppm menunjukkan perbezaan yang signifikan berbanding kawalan. Penggunaan hormon NAA dengan kepekatan yang semakin meningkat telah meningkatkan purata panjang akar, namun memberi kesan sebaliknya diperhatikan pada rawatan IBA. Kesimpulannya, sistem CPIS dengan kehadiran gelembung udara berserta hormon NAA 1.5 ppm mampu menginduksi dan meningkatkan peratus pengakaran A. graminifolia dengan lebih cepat.

 

Kata kunci: Arundina graminifolia; gelembung udara; hormon; penginduksian akar; sistem rendaman berterusan tertutup (CPIS)

 

ABSTRACT

Arundina graminifolia or bamboo orchid is a terrestrial orchid, heat, and disease resistant, easy to maintain, flowers throughout the year and suitable for outdoor landscapes. Commonly, A. graminifolia is propagated through the dividing of root mass and tissue culture.  The rate of propagation via these techniques is very slow and take a long period to produce more planting materials. The use of closed permanent immerse systems (CPIS) has been successful in accelerating the shoot induction of A. graminifolia. However, its root induction takes a while, which is more than three months. Therefore, this study was aimed to improve the CPIS system by adding the presence of air bubbles to accelerate the root induction of A. graminifolia shoots. Furthermore, the use of auxins which are 1-naphthaleneacetic acid (NAA) and Indole-3-butyric acid (IBA) to increase the percentage of root induction on A. graminifolia shoot was also performed. The presence of air bubbles in the CPIS system showed a significant increase in shoot width, height and gap compared to the CPIS system without air bubbles. Shoots that were produced using the CPIS system with air bubbles are also able to produce root (10% of rooting shoots) compared to the CPIS system without air bubbles that did not generate root at all. Root induction on A. graminifolia shoots using IBA and NAA at 0, 0.5, 1.0 and 1.5 ppm concentrations showed significant differences compared to control. Increasing of the NAA hormone concentrations increased the mean of root length, but opposite results were observed with IBA treatment. In conclusion, the CPIS system with air bubbles and 1.5 ppm NAA was able to induce and increase the percentage of rooting of A. graminifolia shoots in a short period.

 

Keywords: Air bubbles; Arundina graminifolia; closed permanent immerse system (CPIS); hormone; root induction

 

RUJUKAN

Bhadra, S.K. & Bhowmik, T.K. 2005. Axenic germina germination of seeds and rhizome-based micropropagation of an orchid Arundina graminifolia (D. Don.) Hochr. Bangladesh Journal of Botany 34(2): 59-64.

Chen, Z., Zeng, S. & Wen, T. 2006. Asepsis sowing and in vitro propagation of Arundina graminifolia Hochr. Plant Physiology Communications 42(1): 66.

Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T. & Neill, S.J. 2000. NO way back: Nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant Journal 24(5): 667-677.

Das, S., Choudhury, M.D. & Mazumder, P.B. 2013. In vitro propagation of Arundina graminifolia (D.Don) Hochr - a bamboo orchid. Asian Journal of Pharmaceutical and Clinical Research 6(5): 156-158.

Deb, C.R. 2013. Orchids of Nagaland, propagation, conservation and sustainable utilization: A review. Pleione 7(1): 52-58.

Engah. W.R.W. 2018. http://www.utusan.com.my/sains teknologi sains/orkid tahan panas © Utusan Melayu (M) Bhd.

Febriani, T.P., Damranti, S. & Raharjo, B. 2009. Pengaruh konsentrasi dan lama perendaman dalam supernatan kultur Bacillus sp.2 DUCC-BR-KI.3 terhadap pertumbuhan stek horisontal batang jarak pagar (Jatropa curcas L.). Jabatan Sains & Matematika 17(3): 131-140.

Fujita, H. & Syono, K. 1996. Genetic analysis of the effects of polar auxin transport inhibitors on root growth in Arabidopsis thaliana. Plant and Cell Physiology 37(8): 1094-1101.

Hartmann, H.T. & Kester, D.E. 1975. Plant Propagation: Principles and Practices. 4th ed. New Jersey. Prentice Hall. m.s. 727.

Hopkins, W.G. & Hüner, N.P.A. 2004. Introduction to Plant Phsiology. London, Ontario: John Wiley & Sons, Inc. m.s. 17-27.

Idris, S., Zain, C.R.C.M., Sandrang, A.K. & Engah, W.R.W. 2019a. A preliminary study on propagation system to induce shoot-bud proliferation of Arundina graminifolia. Dlm.  28th Malaysian Society of Plant Physiology Conference (MSPPC 2018), Challenges and Strategies for Plant Productivity and Resilience, Kelantan, Malaysia. m.s. 71-74.

Idris, S., Sandrang, A.K. & Zain, C.R.C.M. 2019b. Vegetative propagation of Arundina graminifolia: Influences of node numbers, physiological age and position of cutting for best shoot-bud proliferation. International Journal of Agriculture, Forestry and Plantation 8: 36-39.

Idris, S., Zain, C.R.C.M., Sandrang, A.K., Engah, W.R.W. & Nurul Enanee, A.K. 2017. Proliferasi tunas hibrid baharu Arundina graminifolia sp. tempatan × Arundina graminifolia sp. India menggunakan sistem rendaman sementara. Dlm. Prosiding Persidangan Kebangsaan Pemindahan Teknologi (CONFERTECH). m.s. 282-285.

Izzati, I.R., Ketty, S. & Winarso, D.W. 2006. Penggunaan pupuk majemuk sebagai sumber hara pada budidaya selada (Lactuca sativa L.) secara hidroponik dengan tiga cara fertigasi. Dlm. Prosiding Seminar Nasional PERHORTI. m.s. 153-164.

Klerk, G.J.D., Keppel, M., Brugge, J.T. & Meekes, H. 1995. Timing of the phases in adventitious root formation in apple microcuttings. Journal of Experimental Botany 46(8): 965-972.

Kumar, D. & Klessig, D.F. 2000. Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene and jasmonic acid. Molecular Plant-Microbe Interactions 13(3): 347-351.

Liu, M.F., Ding, Y. & Zhang, D.M. 2005. Phenanthrene constituents from rhizome of Arundina graminifolia. China Journal of Chinese Materia Medica 30(5): 353-356.

Martin, K.P. 2007. Micropropagation of the bamboo orchid (Arundina graminifolia (D. Don) Hochr.) through protocorm-like-bodies using node explants. Propagation of Ornamental Plants 7(2): 97-100.

Nagaraju, V. & Parthasarathy, V.S. 1995. In vitro propagation of plaius and bamboo orchid by shoot tip culture. Annals of Plant Physiology 9: 102-104.

O’Byrne, P. 2001. A to Z of South East Asia Orchid Species. Singapore: Orchid Society of South East Asia.

Pagnussat, G.C., Lanteri, M.L., Lombardo, M.C. & Lamattina, L. 2004. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventutios root development. Plant Physiology 135(1): 279-286.

Pagnussat, G.C., Lanteri, M.L. & Lamattina, L. 2003. Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiology 132(3): 1241-1248.

Pagnussat, G.C., Simontacchi, M., Puntarulo, S. & Lamattina, L. 2002. Nitric oxide is required for root organogenesis. Plant Physiology 129(3): 954-956.

Rozlaily, Z. & Engah, W.R.W. 2012. Orkid eksotik untuk landskap. Dlm. Prosiding Persidangan Kebangsan Pemindahan Teknologi (CONFERTECH). m.s. 82-85.

Sandrang, K.A., Sayuti, Z. & Ahmad, H. 2009. Sistem pembiakan kapilari tertutup untuk keratan batang. Buletin Teknologi Tanaman 6: 9-13.

Sari, E. & Bintoro, A. 2016. Betung Bamboo (Dendrocalamus asper) branch cutting response to indole butyric acid (IBA). Journal Sylva Lestari 4(2): 61-68.

Wijayanto, N. & Nurunnajah, N. 2012. Intensitas cahaya, suhu, kelembaban dan perakaran lateral mahoni (Swietenia macrophylla King.) di RPH Babakan Madang, BKPH Bogor, KPH Bogor. Jurnal Silvikultur Tropika 3(1): 8-13.

 

*Pengarang untuk surat-menyurat; email: cradziah@ukm.edu.my

   

 

sebelumnya