Sains Malaysiana 49(10)(2020): 2443-2451
http://dx.doi.org/10.17576/jsm-2020-4910-10
Kesan Gelembung Udara dan Auksin bagi Penginduksian Akar
pada Tunas Arundina graminifolia dalam
Sistem Rendaman Berterusan Tertutup
(Effects of Air Bubbles and Auxin on Root Induction of Arundina graminifolia Shoots in Close
Permanent Immerse System)
SAKINAH IDRIS1, CHE RADZIAH CHE MOHD. ZAIN1* & AB. KAHAR SANDRANG2
1Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2Pusat Penyelidikan Hortikultur,
Ibu Pejabat MARDI, 43400 Serdang, Selangor Darul Ehsan, Malaysia
Diserahkan: 25 September 2019/Diterima: 9 Mei 2020
ABSTRAK
Arundina graminifolia atau orkid buluh adalah orkid yang
hidup di atas tanah, tahan panas dan penyakit, mudah dijaga, berbunga sepanjang
tahun dan sangat sesuai untuk dijadikan tanaman landskap di kawasan terbuka.
Kebiasaannya, A. graminifolia dibiak melalui
pembahagian rumpun dan kultur tisu. Kadar pembiakan daripada kaedah ini adalah
sangat rendah dan mengambil masa yang lama untuk memperbanyakkan bahan tanaman.
Penggunaan sistem rendaman berterusan tertutup (CPIS) telah berjaya
mempercepatkan penginduksian mata tunas A.
graminifolia. Namun, penginduksian akar mengambil
masa yang agak lama iaitu melebihi tiga bulan. Oleh yang demikian, kajian ini
bertujuan untuk menambahbaik sistem CPIS dengan menambah gelembung udara bagi
mempercepatkan penginduksian akar pada tunas A.
graminifolia. Seterusnya, penggunaan auksin asid
naftalenasetik (NAA) dan asid indol-3-butirik (IBA) bagi meningkatkan peratus
pengakaran pada tunas A. graminifolia turut dijalankan. Kehadiran gelembung udara di dalam
sistem CPIS menunjukkan terdapat peningkatan yang signifikan untuk kelebaran,
ketinggian dan kerenggangan mata tunas berbanding dengan CPIS tanpa kehadiran
gelembung udara. Tunas yang terhasil dalam sistem CPIS dengan kehadiran
gelembung udara juga mampu menghasilkan akar (10% tunas yang berakar)
berbanding dengan sistem CPIS tanpa kehadiran gelembung udara yang langsung
tidak menghasilkan akar. Penginduksian akar pada tunas A.
graminifolia menggunakan IBA dan NAA dengan
kepekatan 0, 0.5, 1.0 dan 1.5 ppm menunjukkan perbezaan yang signifikan
berbanding kawalan. Penggunaan hormon NAA dengan kepekatan yang semakin
meningkat telah meningkatkan purata panjang akar, namun memberi kesan
sebaliknya diperhatikan pada rawatan IBA. Kesimpulannya, sistem CPIS dengan
kehadiran gelembung udara berserta hormon NAA 1.5 ppm mampu menginduksi dan
meningkatkan peratus pengakaran A. graminifolia dengan lebih cepat.
Kata kunci: Arundina
graminifolia; gelembung udara; hormon; penginduksian
akar; sistem rendaman berterusan tertutup (CPIS)
ABSTRACT
Arundina
graminifolia or bamboo orchid is a terrestrial orchid, heat, and disease
resistant, easy to maintain, flowers throughout the year and suitable for
outdoor landscapes. Commonly, A. graminifolia is propagated through the dividing
of root mass and tissue culture. The
rate of propagation via these techniques is very slow and take a long period to
produce more planting materials. The use of closed permanent immerse systems
(CPIS) has been successful in accelerating the shoot induction of A.
graminifolia. However, its root induction takes a while, which is more
than three months. Therefore, this study was aimed to improve the CPIS system
by adding the presence of air bubbles to accelerate the root induction of A.
graminifolia shoots. Furthermore, the use of auxins which are
1-naphthaleneacetic acid (NAA) and Indole-3-butyric acid (IBA) to increase the
percentage of root induction on A. graminifolia shoot was also performed. The presence
of air bubbles in the CPIS system showed a significant increase in shoot width,
height and gap compared to the CPIS system without air bubbles. Shoots that
were produced using the CPIS system with air bubbles are also able to produce
root (10% of rooting shoots) compared to the CPIS system without air bubbles
that did not generate root at all. Root induction on A.
graminifolia shoots using IBA and NAA at 0, 0.5, 1.0 and 1.5 ppm
concentrations showed significant differences compared to control. Increasing
of the NAA hormone concentrations increased the mean of root length, but
opposite results were observed with IBA treatment. In conclusion, the CPIS
system with air bubbles and 1.5 ppm NAA was able to induce and increase the
percentage of rooting of A. graminifolia shoots in a short period.
Keywords: Air bubbles; Arundina graminifolia;
closed permanent immerse system (CPIS); hormone; root induction
RUJUKAN
Bhadra, S.K. & Bhowmik, T.K. 2005. Axenic germina
germination of seeds and rhizome-based micropropagation of an orchid Arundina graminifolia (D. Don.) Hochr. Bangladesh Journal of Botany 34(2):
59-64.
Chen, Z., Zeng, S. & Wen, T. 2006. Asepsis sowing and in
vitro propagation of Arundina
graminifolia Hochr. Plant Physiology
Communications 42(1): 66.
Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T. &
Neill, S.J. 2000. NO way back: Nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant Journal 24(5): 667-677.
Das, S., Choudhury, M.D. & Mazumder, P.B. 2013. In vitro propagation of Arundina graminifolia (D.Don) Hochr - a bamboo orchid. Asian Journal of Pharmaceutical and Clinical
Research 6(5): 156-158.
Deb, C.R. 2013. Orchids of Nagaland,
propagation, conservation and sustainable utilization: A review. Pleione 7(1): 52-58.
Engah. W.R.W. 2018.
http://www.utusan.com.my/sains teknologi sains/orkid tahan panas © Utusan
Melayu (M) Bhd.
Febriani, T.P., Damranti, S. &
Raharjo, B. 2009. Pengaruh konsentrasi dan lama perendaman dalam supernatan kultur Bacillus sp.2 DUCC-BR-KI.3 terhadap
pertumbuhan stek horisontal batang jarak pagar (Jatropa curcas L.). Jabatan
Sains & Matematika 17(3): 131-140.
Fujita, H. & Syono, K. 1996. Genetic analysis of the effects of
polar auxin transport inhibitors on root growth in Arabidopsis thaliana. Plant
and Cell Physiology 37(8): 1094-1101.
Hartmann, H.T. & Kester, D.E.
1975. Plant Propagation: Principles and
Practices. 4th ed. New Jersey. Prentice Hall. m.s. 727.
Hopkins, W.G. & Hüner,
N.P.A. 2004. Introduction to Plant
Phsiology. London, Ontario: John Wiley & Sons, Inc. m.s. 17-27.
Idris, S., Zain, C.R.C.M., Sandrang,
A.K. & Engah, W.R.W. 2019a. A preliminary study on propagation system to
induce shoot-bud proliferation of Arundina
graminifolia. Dlm. 28th Malaysian
Society of Plant Physiology Conference (MSPPC 2018), Challenges and Strategies
for Plant Productivity and Resilience, Kelantan, Malaysia. m.s. 71-74.
Idris,
S., Sandrang, A.K. & Zain, C.R.C.M. 2019b. Vegetative propagation of Arundina graminifolia: Influences of node numbers, physiological
age and position of cutting for best shoot-bud proliferation. International
Journal of Agriculture,
Forestry and Plantation 8: 36-39.
Idris, S., Zain, C.R.C.M., Sandrang, A.K., Engah, W.R.W.
& Nurul Enanee, A.K. 2017. Proliferasi tunas hibrid baharu Arundina graminifolia sp. tempatan × Arundina graminifolia sp. India
menggunakan sistem rendaman sementara. Dlm. Prosiding
Persidangan Kebangsaan Pemindahan Teknologi (CONFERTECH). m.s. 282-285.
Izzati, I.R., Ketty, S. &
Winarso, D.W. 2006. Penggunaan pupuk majemuk sebagai sumber hara pada budidaya
selada (Lactuca sativa L.) secara
hidroponik dengan tiga cara fertigasi. Dlm. Prosiding
Seminar Nasional PERHORTI. m.s. 153-164.
Klerk, G.J.D., Keppel, M., Brugge, J.T.
& Meekes, H. 1995. Timing
of the phases in adventitious root formation in apple microcuttings. Journal of Experimental Botany 46(8):
965-972.
Kumar, D. & Klessig, D.F. 2000.
Differential induction of tobacco MAP kinases by the defense signals nitric
oxide, salicylic acid, ethylene and jasmonic acid. Molecular Plant-Microbe Interactions 13(3): 347-351.
Liu, M.F., Ding, Y. & Zhang, D.M. 2005. Phenanthrene
constituents from rhizome of Arundina
graminifolia. China Journal of
Chinese Materia Medica 30(5): 353-356.
Martin, K.P. 2007. Micropropagation of the bamboo orchid (Arundina graminifolia (D. Don) Hochr.)
through protocorm-like-bodies using node explants. Propagation of Ornamental Plants 7(2): 97-100.
Nagaraju, V. & Parthasarathy,
V.S. 1995. In vitro propagation of plaius and bamboo orchid by shoot tip
culture. Annals of Plant Physiology 9: 102-104.
O’Byrne, P. 2001. A to Z of South East Asia Orchid Species.
Singapore: Orchid Society of South East Asia.
Pagnussat, G.C., Lanteri, M.L.,
Lombardo, M.C. & Lamattina, L. 2004. Nitric oxide mediates the indole acetic acid induction
activation of a mitogen-activated protein kinase cascade involved in
adventutios root development. Plant
Physiology 135(1): 279-286.
Pagnussat, G.C., Lanteri, M.L. &
Lamattina, L. 2003. Nitric oxide
and cyclic GMP are messengers in the indole acetic acid-induced adventitious
rooting process. Plant Physiology 132(3): 1241-1248.
Pagnussat, G.C., Simontacchi, M.,
Puntarulo, S. & Lamattina, L. 2002. Nitric oxide is required for root
organogenesis. Plant Physiology 129(3): 954-956.
Rozlaily, Z. & Engah, W.R.W. 2012. Orkid eksotik untuk
landskap. Dlm. Prosiding Persidangan
Kebangsan Pemindahan Teknologi (CONFERTECH). m.s. 82-85.
Sandrang, K.A., Sayuti, Z. & Ahmad,
H. 2009. Sistem pembiakan kapilari tertutup
untuk keratan batang. Buletin Teknologi
Tanaman 6: 9-13.
Sari, E. & Bintoro, A. 2016.
Betung Bamboo (Dendrocalamus asper)
branch cutting response to indole butyric acid (IBA). Journal Sylva Lestari 4(2): 61-68.
Wijayanto,
N. & Nurunnajah, N. 2012. Intensitas cahaya, suhu, kelembaban dan perakaran
lateral mahoni (Swietenia macrophylla King.) di RPH Babakan Madang, BKPH
Bogor, KPH Bogor. Jurnal Silvikultur Tropika 3(1): 8-13.
*Pengarang untuk surat-menyurat;
email: cradziah@ukm.edu.my
|