Sains Malaysiana 49(10)(2020): 2547-2557

http://dx.doi.org/10.17576/jsm-2020-4910-20

 

Rheological and Thermal Stability of Cationic-Modified Diutan Gum Biopolymer

(Reologi dan Kestabilan Terma Biopolimer Gam Diutan Diubahsuai Kationik)

 

NORHANIS ARBAAˈIN, RASIDI ROSLAN*, IZAN IZWAN MISNON & MOHD HASBI AB RAHIM

 

Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia

 

Diserahkan: 7 Februari 2020/Diterima: 19 April 2020

 

ABSTRACT

Cationic diutan gum (CDG) biopolymer has been developed by incorporating a quaternary amine group on diutan gum (DG) structure to improve the thermal and rheological properties. The modification was performed by mixing DG with different N-(3-chloro-2-hydroxypropyl) trimethyl ammonium chloride (CHPTAC) concentration to produce CDG in the presence of sodium hydroxide. The FTIR results confirmed the incorporation of cationic moieties onto the CDG chains. The surface morphology observed through FESEM showed that the smooth surface of DG was converted to a connective spherical reticular structure upon CHPTAC modification. The viscosity of CDG gelling fluid was increased after modification due to electrostatic chain interaction. Rheological properties showed that the plateau-like region was observed which signifying a stable gel response towards frequency. Thermal stability analysis using static thermal aging test showed the CDG was stable up to 170 °C suggesting this biopolymer can withstand the high-temperature requirements of the upstream petroleum industry.

 

Keywords: Cationized polysaccharide; CHPTAC; diutan gum; petroleum industry; rheological behavior

 

ABSTRAK

Biopolimer gam diutan berkation (CDG) telah dibangunkan dengan menggabungkan kumpulan amina kuaterner pada struktur gam diutan (DG) untuk menambahbaik sifat terma dan reologi. Pengubahsuaian dilakukan dengan mencampurkan DG dengan N-(3-kloro-2-hidroksipropil) trimetil ammonium klorida (CHPTAC) pada kepekatan yang berbeza untuk menghasilkan CDG dengan kehadiran natrium hidroksida. Keputusan FTIR mengesahkan penggabungan moieti berkation ke rantai CDG. Morfologi permukaan yang dicerap menggunakan FESEM menunjukkan bahawa permukaan licin DG ditukarkan kepada struktur sfera retikulum berhubung setelah pengubahsuaian CHPTAC dilakukan. Kelikatan bendalir pengegelan CDG meningkat selepas pengubahsuaian disebabkan oleh interaksi rantai elektrostatik. Sifat reologi menunjukkan lengkung dataran telah diperhatikan, menandakan tindak balas gel yang stabil terhadap frekuensi. Analisis kestabilan terma menggunakan ujian penuaan haba statik menunjukkan CDG stabil sehingga 170 °C mencadangkan biopolimer ini mampu menampung keperluan suhu-tinggi industri petroleum huluan.

 

Kata kunci: CHPTAC; gam diutan; industri petroleum; penkationan polisakarida; tingkah laku reologi

 

RUJUKAN

Abbas, S., Sanders, A.W. & Donovan, J.C. 2013. Applicability of hydroxyethylcellulose polymers for chemical EOR. SPE Enhanced Oil Recovery Conference Publication No. 165311-MS. April 20-23.

Arbaa’in, N., Roslan, R., Ismail, J., Ab Rahim, M.H. & Mohd Tahir, F.K. 2020. The study of cationic modification of welan gum. Materials Science Forum 981: 127-131.

Arbaa′in, N., Roslan, R., Ismail, J. & Rahim, M.H.A. 2018. Modification of diutan gum to enhance rheological properties for oil and gas application. AIP Conference Proceedings 2030(1): 020218.

Bai, Y., Shang, X., Wang, Z. & Zhao, X. 2018. Experimental study on hydrophobically associating hydroxyethyl cellulose flooding system for enhanced oil recovery. Energy & Fuels 32(6): 6713-6725.

Banerjee, P., Mukherjee, I., Bhattacharya, S., Datta, S., Moulik, S.P. & Sarkar, D. 2009. Sorption of water vapor, hydration, and viscosity of carboxymethylhydroxypropyl guar, diutan, and xanthan gums, and their molecular association with and without salts (NaCl, CaCl2, HCOOK, CH3COONa, (NH4)2SO4 and MgSO4) in aqueous solution. Langmuir 25(19): 11647-11656.

Barnes, J.R., Smit, J., Smit, J., Shpakoff, G., Raney, K.H. & Puerto, M. 2008. Development of surfactants for chemical flooding at difficult reservoir conditions. SPE Symposium on Improved Oil Recovery Publication No. 113313-MS. April 20-23.

Carmen García González, M., Del Socorro Cely García, M., García, J.M. & Alfaro-Rodriguez, M.C. 2019. A comparison of the effect of temperature on the rheological properties of diutan and Rhamsan gum aqueous solutions. Fluids 4(1): 22.

Castillo, N.A., Valdez, A.L. & Fariña, J.I. 2015. Microbial production of scleroglucan and downstream processing. Frontiers in Microbiology 6(2015): 1106.

Chen, Q., Wu, Y., Pu, Y., Zheng, Z., Shi, C. & Huang, X. 2010. Synthesis and characterization of quaternized β-chitin. Carbohydrate Research 345(11): 1609-1612.

Covis, R., Guegan, J.-P., Jeftić, J., Czjzek, M., Benoit, M. & Benvegnu, T. 2016. Structural and rheological properties of kappa (κ)-carrageenans covalently modified with cationic moieties. Journal of Polymer Research 23(4): 78.

Deshpande, A. 2009. Techniques in Oscillatory Shear Rheology. https://www.semanticscholar.org/paper/Techniques-in-oscillatory-shear-rheology-Deshpande/6614c4224df77eb1615beb0aca1e580511022354.

Diltz, S. & Zeller, S.G. 2001. Location of O-acetyl groups in S-657 using the reductive-cleavage method. Carbohydrate Research 331(3): 265-270.

Douglas, J.F. 2018. Weak and strong gels and the emergence of the amorphous solid state. Gels 4(1): 19.

Fariña, J.I., Siñeriz, F., Molina, O.E. & Perotti, N.I. 2001. Isolation and physicochemical characterization of soluble scleroglucan from Sclerotium rolfsii. Rheological properties, molecular weight and conformational characteristics. Carbohydrate Polymers 44(1): 41-50.

Gao, C. 2016. Application of a novel biopolymer to enhance oil recovery. Journal of Petroleum Exploration and Production Technology 6(4): 749-753.

Gao, C. 2015. Potential of Welan gum to enhance oil recovery. Journal of Petroleum Exploration and Production Technology 5(2): 197-200.

Ghimici, L., Morariu, S. & Nichifor, M. 2009. Separation of clay suspension by ionic dextran derivatives. Separation and Purification Technology 68(2): 165-171.

Haack, V., Heinze, T., Oelmeyer, G. & Kulicke, W.M. 2002. Starch derivatives of high degree of functionalization, synthesis and flocculation behavior of cationic starch polyelectrolytes. Macromolecular Materials and Engineering 287(8): 495-502.

Jang, H.Y., Zhang, K., Chon, B.H. & Choi, H.J. 2015. Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. Journal of Industrial and Engineering Chemistry 21: 741-745.

Jo, J., Okazaki, A., Nagane, K., Yamamoto, M. & Tabata, Y. 2010. Preparation of cationized polysaccharides as gene transfection carrier for bone marrow-derived mesenchymal stem cells. Journal of Biomaterials Science. Polymer Edition 21(2): 185-204.

Kavaliauskaite, R., Klimaviciute, R. & Zemaitaitis, A. 2008. Factors influencing production of cationic starches. Carbohydrate Polymers 73(4): 665-675.

Li, H., Chen, R., Lu, X. & Hou, W. 2012. Rheological properties of aqueous solution containing xanthan gum and cationic cellulose JR400. Carbohydrate Polymers 90(3): 1330-1336.

Li, Y., Xu, L., Gong, H., Ding, B., Dong, M. & Li, Y. 2017. A microbial exopolysaccharide produced by Sphingomonas species for enhanced heavy oil recovery at high temperature and high salinity. Energy & Fuels 31(4): 3960-3969.

Liang, K., Han, P., Chen, Q., Su, X. & Feng, Y. 2019. Comparative study on enhancing oil recovery under high temperature and high salinity: Polysaccharides versus synthetic polymer. ACS Omega 4(6): 10620-10628.

Marques, N.d.N., d.C.B., Rosalenga, Halila, S. & Borsali, R. 2018. Synthesis and characterization of carboxymethylcellulose grafted with thermoresponsive side chains of high LCST: The high temperature and high salinity self-assembly dependence. Carbohydrate Polymers 184: 108-117.

Moral, A., Aguado, R. & Tijero, A. 2016. Alkalization and cationization of cellulose: Effects on intrinsic viscosity. Fibers and Polymers 17(6): 857-861.

Pal, S., Mal, D. & Singh, R.P. 2007. Synthesis and characterization of cationic guar gum: A high performance flocculating agent. Journal of Applied Polymer Science 105(6): 3240-3245.

Pal, S., Mal, D. & Singh, R.P. 2005. Cationic starch: An effective flocculating agent. Carbohydrate Polymers 59(4): 417-423.

Prado, H.J. & Matulewicz, M.C. 2014. Cationization of polysaccharides: A path to greener derivatives with many industrial applications. European Polymer Journal 52(1): 53-75.

Prado, H.J., Matulewicz, M.C., Bonelli, P.R. & Cukierman, A.L. 2011. Studies on the cationization of agarose. Carbohydrate Research 346(2): 311-321.

Pu, W., Shen, C., Wei, B., Yang, Y. & Li, Y. 2018. A comprehensive review of polysaccharide biopolymers for enhanced oil recovery (EOR) from flask to field. Journal of Industrial and Engineering Chemistry 61: 1-11.

Ren, J.L., Sun, R.C., Liu, C.F., Lin, L. & He, B.H. 2007. Synthesis and characterization of novel cationic SCB hemicelluloses with a low degree of substitution. Carbohydrate Polymers 67(3): 347-357.

Ryles, R.G. 1988. Chemical stability limits of water-soluble polymers used in oil recovery processes. SPE Reservoir Engineering 3(1): 23-34.

Shi, L., Wei, Y., Luo, N., Tan, T. & Cao, H. 2017. The rheological and thickening properties of cationic xanthan gum. Journal of Dispersion Science and Technology 39(1): 55-61.

Sonebi, M. 2006. Rheological properties of grouts with viscosity modifying agents as diutan gum and welan gum incorporating pulverised fly ash. Cement and Concrete Research 36(9): 1609-1618.

Sonebi, M. & McKendry, D. 2008. Effect of mix proportions on rheological and hardened properties of composite cement pastes. The Open Construction and Building Technology Journal 2(1): 15-23.

Tako, M. 1994. Molecular origin for the thermal stability of S-657 polysaccharide produced by Xanthomonas ATCC 53159. Polymer Gels and Networks 2(2): 91-104.

Tarus, D., Hachet, E., Messager, L., Catargi, B., Ravaine, V. & Auzély‐Velty, R. 2014. Readily prepared dynamic hydrogels by combining phenyl boronic acid- and maltose-modified anionic polysaccharides at neutral pH. Macromolecular Rapid Communications 35(24): 2089-2095.

Tian, D., Wu, X., Liu, C. & Xie, H.Q. 2010. Synthesis and flocculation behavior of cationic konjac glucomannan containing quaternary ammonium substituents. Journal of Applied Polymer Science 115(4): 2368-2374.

Wang, S., He, L., Guo, J., Zhao, J. & Tang, H. 2015. Intrinsic viscosity and rheological properties of natural and substituted guar gums in seawater. International Journal of Biological Macromolecules 76(Supplement C): 262-268.

Wang, Z.H., Li, W.B., Ma, J., Tang, G.P., Yang, W.T. & Xu, F.J. 2011. Functionalized nonionic dextran backbones by atom transfer radical polymerization for efficient gene delivery. Macromolecules 44(2): 230-239.

Xu, L., Qiu, Z., Gong, H., Zhu, C., Li, Z., Li, Y. & Dong, M. 2019. Rheological behaviors of microbial polysaccharides with different substituents in aqueous solutions: Effects of concentration, temperature, inorganic salt and surfactant. Carbohydrate Polymers 219: 162-171.

Xu, L., Gong, H., Dong, M. & Li, Y. 2015. Rheological properties and thickening mechanism of aqueous diutan gum solution: Effects of temperature and salts. Carbohydrate Polymers 132: 620-629.

Yu, H., Huang, Y., Ying, H. & Xiao, C. 2007. Preparation and characterization of a quaternary ammonium derivative of konjac glucomannan. Carbohydrate Polymers 69(1): 29-40.

Zhang, J., Weissinger, E.A., Peethamparan, S. & Scherer, G.W. 2010. Early hydration and setting of oil well cement. Cement and Concrete Research 40(7): 1023-1033.

Zhou, H., Deville, J.P. & Davis, C.L. 2015. Novel high density brine-based drill-in fluids significantly increased temperature limit for HP/HT applications. Society of Petroleum Engineers. SPE/IADC Drilling Conference and Exhibition Publication No. 173075-MS. March 17-19.

Zohuriaan, M.J. & Shokrolahi, F. 2004. Thermal studies on natural and modified gums. Polymer Testing 23(5): 575-579.

 

*Pengarang untuk surat-menyurat; email: rasidi@ump.edu.my

   

 

sebelumnya