Sains Malaysiana 49(10)(2020):
2559-2564
http://dx.doi.org/10.17576/jsm-2020-4910-21
Photoluminescence
and Raman Scattering of GaAs1-xBix Alloy
(Kefotopendarcahayaan dan Serakan Raman pada Aloi GaAs1-xBix)
L.
HASANAH1, C. JULIAN1, B. MULYANTI2, A. ARANSA1,
R. SUMATRI1, M.H. JOHARI3, J.P.R. DAVID4 &
A.R. MOHMAD3*
1Department of
Physics Education, Universitas Pendidikan Indonesia, Dr. Setiabudhi St. No. 229, 40154, Bandung, Indonesia
2Department of
Electrical Engineering Education, Universitas Pendidikan Indonesia, Dr. Setiabudhi St. No. 229, 40154 Bandung, Indonesia
3Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
4Department of
Electronics and Electrical Engineering, University of Sheffield, Mappin Street
S1 3JD, Sheffield, United Kingdom
Diserahkan: 4 Mac 2020/Diterima: 17 April 2020
ABSTRACT
Photoluminescence (PL) and Raman spectra of GaAs1-xBix samples grown at different rates (0.09 to 0.5 µm/h) were investigated. The PL
peak wavelength initially redshifted with the increase of growth rate and
reached the longest wavelength (1158 nm) for sample grown at 0.23 µm/h. This is
followed by PL peak wavelength blueshift for higher growth rates. The Raman
data show peaks at 162, 228, 270, and 295 cm-1 which can be
attributed to GaAs like phonons. GaBi like
vibrational modes were also observed at 183 and 213 cm-1. However,
the intensity of Bi induced phonons is significantly weaker compared to GaAs
due to low concentration of Bi compared to As and thin GaAs1-xBix epilayer. The PL data and GaAs transverse optical (TO) to longitudinal optical
(LO) phonons intensity ratio indicate that Bi concentration is highly dependent
on the growth rate and the highest Bi concentration was obtained by sample
grown at 0.23 µm/h. It is found that the full-width-at-half-maximum (FWHM) of
GaAs LO mode increases significantly for samples grown at high growth rates
suggesting crystal quality degradation due to lack of surfactant effects.
Keywords: GaAsBi; photoluminescence; Raman spectroscopy
ABSTRAK
Kefotopendarcahayaan (PL) dan spektrum Raman daripada sampel GaAs1-xBix yang ditumbuhkan pada kadar berbeza (0.09 hingga 0.5 µm/jam) telah dikaji. Pada mulanya, panjang gelombang puncak PL mengalami anjakan merah dengan peningkatan kadar pertumbuhan dan mencapai panjang gelombang tertinggi iaitu 1158 nm untuk sampel yang ditumbuh pada kadar 0.23 µm/jam. Ini diikuti oleh anjakan biru pada kadar pertumbuhan yang lebih tinggi. Data
Raman menunjukkan kehadiran beberapa puncak pada nombor gelombang 162, 228, 270 dan 295 cm-1 yang disebabkan oleh fonon GaAs. Selain itu,
mod getaran GaBi juga dapat diperhatikan pada 183 dan 213 cm-1. Namun, keamatan fonon GaBi jauh lebih lemah berbanding GaAs disebabkan kepekatan Bi yang rendah berbanding As dan lapisan GaAs1-xBix yang nipis. Data PL dan nisbah keamatan fonon optik melintang (TO) kepada fonon optik membujur (LO) GaAs menunjukkan bahawa kepekatan Bi sangat bergantung kepada kadar pertumbuhan dan kepekatan Bi yang tertinggi diperoleh oleh sampel yang ditumbuh pada kadar 0.23 µm/jam. Kajian ini mendapati bahawa nilai FWHM untuk fonon LO GaAs meningkat dengan ketara untuk sampel yang ditumbuh dengan kadar pertumbuhan yang tinggi dan ini menunjukkan kemerosotan kualiti kristal disebabkan oleh pengurangan kesan surfaktan.
Kata kunci: GaAsBi; kefotopendarcahayaan; spektroskopi Raman
RUJUKAN
Alberi, K., Dubon, O.D., Walukiewicz, W., Yu, K.M., Bertulis,
K. & Krotkus, A. 2007. Valence band anticrossing in GaBiAs. Applied
Physics Letters 91(5):
051909.
Bastiman, F.,
Mohmad, A.R.B., Ng, J.S., David, J.P.R. & Sweeney, S.J. 2012. Non-stoichiometric GaAsBi/GaAs (100) molecular beam epitaxy growth. Journal
of Crystal Growth 338(1): 57-61.
Bertulis, K., Krotkus, A., Aleksejenko, G., Pačebutas, V., Adomavičius, R., Molis,
G. & Marcinkevičius, S. 2006. GaBiAs: A material for optoelectronic terahertz
devices. Applied Physics Letters 88(20): 201112.
Erol, A., Akalin, E., Kara, K., Aslan, M., Bahrami-Yekta,
V., Lewis, R.B. & Tiedje, T. 2017. Raman and AFM
studies on nominally undoped, p- and n-type GaAsBi alloys. Journal of Alloys and Compounds 722: 339-343.
Francoeur, S., Seong, M.J., Mascarenhas, A., Tixier, S., Adamcyk, M. & Tiedje, T. 2003. Band
gap of GaAsBi, 0<x<3.6%. Applied
Physics Letters 82(22):
3874-3876.
Henini, M.,
Ibanez, J., Schmidbauer, M., Shafi,
M., Novikov, S.V., Turyanska,
L., Molina, S.I., Sales, D.L., Chisholm, M.F. & Misiewicz,
J. 2007. Molecular beam epitaxy of GaBiAs on (311)B GaAs
substrates. Applied Physics Letters 91(25): 251909.
Huang, W., Oe,
K., Feng, G. & Yoshimoto, M. 2005. Molecular-beam
epitaxy and characteristics of GaNAs1-x-yBix. Journal of Applied Physics 98(5): 053505.
Kunzer, M., Jost, W., Kaufmann, U., Hobgood, H.M. & Thomas, R.N.
1993. Identification of the BiGa heteroantisite defect in GaAs: Bi. Physics Review B (Condensed
Matter) 48(7): 4437-4441.
Lewis, R.B., Masnadi-Shirazi, M. & Tiedje,
T. 2012. Growth of high Bi concentration GaAs1-x Bix by
molecular beam epitaxy. Applied Physics Letters 101(8): 082112.
Lu, X., Beaton, D.A.,
Lewis, R.B., Tiedje, T. & Zhang, Y. 2009. Composition dependence of photoluminescence
of GaAs1-xBix alloys. Applied Physics Letters 95(4): 041903.
Lu, X., Beaton, D.A.,
Lewis, R.B., Tiedje, T. & Whitwick, M.B. 2008. Effect of molecular beam epitaxy growth
conditions on the Bi content of GaAs1-xBix. Applied Physics Letters 92(19): 192110.
Mohmad,
A.R., Bastiman, F., Hunter, C.J., Harun, F., Reyes,
D.F., Sales, D.L., Gonzales, D., Richards, R.D., David, J.P.R. & Majlis,
B.Y. 2015. Bismuth concentration
inhomogeneity in GaAsBi bulk and quantum well
structures. Semiconductor Science and Technology 30(9):
094018.
Mohmad,
A.R., Bastiman, F., Hunter, C.J., Richards, R.D.,
Sweeney, S.J., Ng, J.S., David, J.P.R. & Majlis, B.Y. 2014. Localization
effects and band gap of GaAsBi alloys. Physica Status Solidi (B) 251(6): 1276-1281.
Mohmad,
A.R., Bastiman, F., Ng, J.S., Sweeney, S.J. &
David, J.P.R. 2011. Photoluminescence
investigation of high quality GaAs1-xBix on GaAs. Applied
Physics Letters 98(12): 122107.
Oe, K.
2002. Characteristics of semiconductor alloy GaAs1-xBix. Japanese Journal of Applied Physics 41(5A): 2801.
Ptak,
A.J., France, R., Beaton, D.A., Alberi, K., Simon,
J., Mascarenhas, A. & Jiang, C.S. 2012. Kinetically
limited growth of GaAsBi by molecular-beam epitaxy. Journal
of Crystal Growth 338(1): 107-110.
Seong,
M.J., Francoeur, S., Yoon, S., Mascarenhas,
A., Tixier, S., Adamcyk, M.
& Tiedje, T. 2005. Bi-induced vibrational modes
in GaAsBi. Superlattices and Microstructure 37(6): 394-400.
Steele, J.A., Lewis,
R.A., Henini, M., Lemine,
O.M., Fan, D., Mazur, Y.I., Dorogan, V.G., Grant,
P.C., Yu, S.Q. & Salamo, G.J. 2014. Raman scattering reveals strong
LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: Optical determination of carrier
concentration. Optic Express 22(10): 11680-11689.
Steele, J.A., Lewis,
R.A., Henini, M., Lemine,
O.M. & Alkaoud, A. 2013. Raman scattering studies
of strain effects in (100) and (311)B GaAs1-xBix epitaxial layers. Journal of Applied Physics 114(19): 193516.
Tixier, S., Adamcyk, M., Tiedje, T.,
Francoeur, S., Mascarenhas, A., Wei, P. & Schiettekatte, F. 2003. Molecular beam epitaxy growth of
GaAs1-xBix. Applied Physics Letters 82(14): 2245-2247.
Verma, P., Oe, K., Yamada, M., Harima, H., Herms, M. & Irmer, G. 2001. Raman
studies on GaAs1-xBix and InAs1-xBix. Journal of Applied
Physics 89(3): 1657-1663.
Zhang, Y., Mascarenhas, A. & Wang, L.W. 2005. Similar and dissimilar aspects of III-V
semiconductors containing Bi versus N. Physics Review B 71(15): 155201.
*Pengarang untuk surat-menyurat; email:
armohmad@ukm.edu.my
|