Sains Malaysiana 49(4)(2020): 919-928
http://dx.doi.org/10.17576/jsm-2020-4904-21
Limit
Theorem for A Semi-Markovian Random Walk with
General Interference of Chance
(Had Teorem untuk
Jalan Rawak Semi-Markovan dengan Kemungkinan Gangguan Umum)
TAHIR
KHANIYEV1,3 & OZLEM ARDIC SEVINC1,2*
1Department of Industrial Engineering, TOBB
University of Economics and Technology, 06560, Ankara, Turkey
2Department of Structural Economic Research,
Central Bank of the Republic of Turkey, 06050, Altindag,
Ankara, Turkey
3Institute of Control Systems, Azerbaijan
National Academy of Sciences, AZ 1141, Baku, Azerbaijan
Diserahkan: 29
Jun 2019/Diterima: 6 Disember 2019
ABSTRACT
A
semi-Markovian random-walk process with general interference of chance was
constructed and investigated. The key point of this study is the assumption
that the discrete interference of chance has a general form. Under some
conditions, it is proved that the process is ergodic, and the exact forms of
the ergodic distribution and characteristic function of the process are
obtained. By using basic identity for
random walks, the characteristic function of the process is expressed by the
characteristic function of a boundary functional. Then, two-term asymptotic
expansion for the characteristic function of the standardized process is found.
Using this asymptotic expansion, a weak convergence theorem for the ergodic
distribution of the standardized process is proved, and the limiting form for the
ergodic distribution is obtained. The obtained limit distribution coincides
with the limit distribution of the residual waiting time of the renewal process
generated by a sequence of random variables expressing the discrete
interference of chance.
Keywords: Discrete interference of chance;
ergodic distribution; limit distribution; random walk; weak convergence
ABSTRAK
Proses jalan rawak semi-Markovan dengan kemungkinan gangguan umum telah
dibangunkan dan dikaji. Isi utama kajian ini adalah andaian bahawa kemungkinan
gangguan diskrit mempunyai bentuk umum. Dalam beberapa keadaan, terbukti bahawa
prosesnya ergodik dan bentuk asal taburan ergodik serta fungsi pencirian
prosesnya diperoleh. Dengan menggunakan identiti asas untuk jalan rawak, fungsi
pencirian prosesnya diungkapkan oleh fungsi pencirian sempadan fungsian.
Kemudian, pengembangan asimptotik dua penggal untuk fungsi pencirian piawai
prosesnya ditemui. Dengan menggunakan pengembangan asimtotik ini, teorem
penumpuan yang lemah untuk taburan ergodik daripada proses piawai dibuktikan
dan bentuk pembatasan untuk taburan ergodik diperoleh. Taburan had yang
diperoleh bertepatan dengan had taburan sisa masa menunggu proses pembaharuan
yang dihasilkan oleh jujukan pemboleh ubah rawak yang mengungkapkan kemungkinan
gangguan diskrit.
Kata kunci: Had taburan; jalan rawak; kemungkinan gangguan diskrit;
penumpuan yang lemah; taburan ergodik
RUJUKAN
Aliyev, R., Ardic, O. & Khaniyev, T.
2016. Asymptotic approach for a renewal-reward process with a general interference
of chance. Communication in
Statistics-Theory and Methods 45(14): 4237-4248.
Aliyev, R., Khaniyev, T. & Kesemen, T.
2009. Asymptotic expansions for the moments of the semi-Markovian random walk
with Gamma distributed interference of chance. Communication in Statistics-Theory and Methods 39(1): 130-143.
Aliyev, R., Kucuk, Z. & Khaniyev, T.
2010. Three-term asymptotic expansions for the moments of the random walk with
triangular distributed interference of chance. Applied Mathematical Modelling 34(11): 3599-3607.
Alsmeyer, G. 1991. Some
relations between harmonic renewal measure and certain first passage
times. Statistics and Probability Letters 12(1): 19-27.
Başar, E. 2017. Aalen’s
additive, Cox proportional hazards and the Cox-Aalen model: Application to
kidney transplant data. Sains Malaysiana 46(3): 469-476.
Blanchet,
J. & Glynn, P. 2006. Complete corrected diffusion approximations for the
maximum of a random walk. The Annals of
Applied Probability 16(2): 951-983.
Brown,
M. & Solomon, H.A. 1975. Second-order approximation for the variance of a
renewal-reward process. Stochastic
Processes and Their Applications 3(3): 301–314.
Chang,
J.T. & Peres, Y. 1997. Ladder heights, Gaussian random walks and the
Riemann zeta function. Annals of
Probability 25(2): 787-802.
Feller,
W. 1971. Introduction to Probability
Theory and Its Applications II. New York: John Wiley.
Gihman, I.I. & Skorohod, A.V. 1975. Theory
of Stochastic Processes II. Berlin: Springer.
Gökpınar, E., Khaniyev, T. & Gamgam, H.
2015. Asymptotic properties of the straight line estimator for a renewal
function. Sains Malaysiana 44(7): 1041-1051.
Gökpınar, F., Khaniyev, T. & Mammadova, Z.
2013. The weak convergence theorem for the distribution of the maximum of a
Gaussian random walk and approximation formulas for its moments. Methodology and Computing in Applied
Probability 15: 333-347.
Hanalioglu, Z. & Khaniyev, T. 2019. Limit theorem for a semi-Markovian
stochastic model of type (s,S). Hacettepe Journal of Mathematics and Statistics 48(2): 605-615.
Hanalioglu, Z., Khaniyev, T. & Agakishiyev,
I. 2015. Weak convergence theorem for the ergodic distribution of a random walk
with normal distributed interference of chance. TWMS Journal of Applied and Engineering Mathematics 5(1): 61-73.
Janseen, A.J.E.M. &
Van Leeuwarden, J.S.H. 2007. On Lerch’s transcendent
and the Gaussian random walk. Annals of
Applied Probability 17(2): 421-439.
Kesemen, T., Aliyev, R. & Khaniyev, T.
2013. Limit distribution for a semi-Markovian random walk with Weibull
distributed interference of chance. Journal
of Inequalities and Applications doi.org/10.1186/1029-242X-2013-134.
Khaniyev, T. & Mammadova, Z. 2006. On the stationary characteristics of
the extended model of type (s,S)
with Gaussian distribution of summands. Journal
of Statistical Computation and Simulation 76(10): 861-874.
Khaniyev, T. 2003. Some
asymptotic results for the semi-Markovian random walk with a special barrier. Turkish Journal of Mathematics 27:
251-272.
Khaniyev, T., Kesemen, T., Aliyev, R. & Kokangul, A. 2008. Asymptotic expansions for the moments of
a semi-Markovian random walk with exponential distributed interference of
chance. Statistics and Probability
Letters 78(6): 785-793.
Lotov, V.I. 1996. On
some boundary crossing problems for Gaussian random walks. Annals of Probability 24(4): 2154-2171.
Lukacs, E. 1970. Characteristic Functions. London:
Griffin.
Nagaev, S.V. 2010. Exact
expressions for the moments of ladder heights. Siberian Mathematical Journal 51(4): 675-695.
Rogozin, B.A. 1964. On
the distribution of the first jump. Theory
of Probability and Its Applications 9(3): 450-465.
Samsuddin, S. & Ismail,
N. 2019. Markov chain model and stationary test: A case study on Malaysia
Social Security (SOCSO). Sains Malaysiana 48(3): 697-701.
Siegmund, D. 1979.
Corrected diffusion approximations in certain random walk problems. Advances in Applied Probability 11(4):
701-719.
*Pengarang untuk surat-menyurat; email: ardicozlem@gmail.com
|