Sains Malaysiana 49(4)(2020): 929-940

http://dx.doi.org/10.17576/jsm-2020-4904-22

 

Hybrid Multistep Block Method for Solving Neutral Delay Differential Equations

(Kaedah Blok Berbilang Langkah HibridBagi Menyelesaikan PersamaanPembezaan Lengah Neutral)

 

NUR INSHIRAH NAQIAH ISMAIL1, ZANARIAH ABDUL MAJID1,2* & NORAZAK SENU1

 

1Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 26 September 2019/Diterima: 13 Januari 2020

 

ABSTRACT

The initial-value problem for first order single linear neutral delay differential equations (NDDEs) of constant and pantograph delay types have been solved by using hybrid multistep block method. The method has been derived by applying Taylor series interpolation polynomial and implementing the predictor-corrector formulas in PE(CE)m  mode where m  is the number of iterations for the proposed method. Both types of NDDEs will be solved at two-point simultaneously including the off-step point with constant step-size. In order to find the solution for NDDEs, the delay solutions of the unknown function will be interpolated using Lagrange interpolation polynomial and the derivative of the delay solutions will be obtained by applying divided difference formula. The order, consistency and convergence of the proposed method have been discussed in detail in the methods section. The properties of stability region for NDDEs have also been analysed. Numerical results presented have concluded that the proposed method is comparable with the existing method and is assumed to be reliable for solving first order NDDEs with constant and pantograph delay.

 

Keywords: Constant delay; multistep block method; neutral delay differential equations; off-step point; pantograph delay

 

ABSTRAK

Masalah nilai permulaan untuk terbitan pertama tunggal linear Persamaan Pembezaan Lengah Neutral (PPLN) bagi jenis kelengahan malar dan pantograf telah diselesaikan dengan menggunakan kaedah blok berbilang langkah hibrid. Kaedah ini diperoleh dengan menggunakan polinomial penyuaian siri Taylor dan melaksanakan rumusan peramal pembetul dalam mod PE(CE)m dengan m  adalah bilangan pengulangan bagi kaedah yang dicadangkan. Kedua-dua jenis PPLN akan diselesaikan pada dua titik serentak termasuk titik luar langkah dengan saiz langkah yang malar. Bagi mencari penyelesaian untuk PPLN, nilai kelengahan bagi fungsi yang tidak diketahui akan diperoleh melalui penggunaan polinomial penyuaian Lagrange dan pembezaan penyelesaian kelengahan akan diperoleh dengan menggunakan formula perbezaan pembahagian. Penentuan peringkat, tahap ketekalan danpenumpuan bagi kaedah yang dicadangkan telah dibincangkan secara terperinci dalam bahagian metod. Ciri-ciri kawasan kestabilan untuk PPLN juga telah dianalisis. Keputusan berangka yang dibentangkan telah menyimpulkan bahawa kaedah yang dicadangkan adalah setanding dengan kaedah yang telah sedia ada dan dianggap dapat menyelesaikan peringkat pertama PPLN dengan kelengahan malar dan pantograf.

 

Kata kunci: Kaedah blok berbilang langkah; ketundaan malar; ketundaan pantograf; persamaan pembezaan lengah neutral; titik luar langkah

RUJUKAN

Ahmad, J. & Fatima, N. 2016. Analytical exact solution of neural functional differential equations. Universal Journal of Computational Mathematics 4(2): 24-28.

Baker, C.T., Bocharov, G. & Rihan, F.A.R. 2008. Neutral delay differential equations in the modeling of cell growth. Applied Mathematics Group Research Report 2008: 1. Chester, United Kingdom: University of Chester.

Bellen, A. & Guglielmi, N. 2009. Solving neutral delay differential equations with state dependent delays. Journal of Computational and Applied Mathematics 229(2): 350-362.

Bellen, A., Jackiewicz, Z. & Zennaro, M. 1988. Stability analysis of one-step methods for neutral delay differential equations. Numerische Mathematik 52(6): 605-619.

Biazar, J. & Ghanbari, B. 2012. The homotopy perturbation method for solving neutral functional differential equations with proportional delays. Journal of King Saud University-Science 24(1): 33-37.

Chen, X. & Wang, L. 2010. The variational iteration method for solving a neutral functional differential equation with proportional delays. Computers and Mathematics with Applications 59(8): 2696-2702.

Ibrahim, Z.B., Zainuddin, N., Othman, K.I., Suleiman, M. & Zawawi, I.S.M. 2019. Variable order block method for solving second order ordinary differential equations. Sains Malaysiana 48(8): 1761-1769.

Ishak, F. & Ramli, M.S.B. 2015. Implicit block method for solving neutral delay differential equations. In AIP Conference Proceedings. Volume 1682: 020054. AIP Publishing.

Ishak, F., Suleiman, M.B. & Majid, Z.A. 2014. Numerical solution and stability of block method for solving functional differential equations. In Transactions on Engineering Technologies Dordrecht: Springer. pp. 597-609.

Ishak, F., Suleiman, M.B. & Majid, Z.A. 2013. Block method for solving pantograph type functional differential equations. In Proceedings of the World Congress on Engineering Volume II.

Ismail, N.I.N., Majid, Z.A. & Senu, N. 2019. Explicit multistep block method for solving neutral delay differential equation. ASM Science Journal (IQRAC2018) 12(1): 24-32.

Ismail, F., Ahmad, S.Z., Jikantoro, Y.D. & Senu, N. 2018. Block hybrid method with trigonometric-fitting for solving oscillatory problems. Sains Malaysiana 47(9): 2223-2230.

Jackiewicz, Z. 1987. Variable-step variable-order algorithm for the numerical solution of neutral functional differential equations. Applied Numerical Mathematics 3(4): 317-329.

Jackiewicz, Z. 1986. Quasilinear multistep methods and variable step predictor-corrector methods for neutral functional differential equations. SIAM Journal on Numerical Analysis 23(2): 423-452.

Jackiewicz, Z. 1984. One-step methods of any order for neutral functional differential equations. SIAM Journal on Numerical Analysis 21(3): 486-511.

Jackiewicz, Z. 1982. Adams methods for neutral functional differential equations. Numerische Mathematik 39(2): 221-230.

Jackiewicz, Z. & Lo, E. 2006. Numerical solution of neutral functional differential equations by Adams methods in divided difference form. Journal of Computational and Applied Mathematics 189(1-2): 592-605.

Jackiewicz, Z. & Lo, E. 1991. The numerical solution of neutral functional differential equations by Adams predictor-corrector methods. Applied Numerical Mathematics 8(6): 477-491.

Kuang, Y. 1993. Delay Differential Equations: With Applications in Population Dynamics. Volume 191. Boston:  Academic Press.

Lambert, J.D. 1973. Computational Methods in Ordinary Differential Equations. London: Wiley.

Liu, M., Dassios, I. & Milano, F. 2019. On the stability analysis of systems of neutral delay differential equations. Circuits, Systems, and Signal Processing 38(4): 1639-1653.

Lv, X. & Gao, Y. 2013. The RKHSM for solving neutral functional differential equations with proportional delays. Mathematical Methods in the Applied Sciences 36(6): 642-649.

Majid, Z.A. & Mohamed, N.A. 2019. Fifth order multistep block method for solving volterra integro-differential equations of second kind. Sains Malaysiana 48(3): 677-684.

Majid, Z.A. & Suleiman, M. 2011. Predictor-corrector block iteration method for solving ordinary differential equations. Sains Malaysiana 40(6): 659-664.

Sakar, M.G. 2017. Numerical solution of neutral functional differential equations with proportional delays. An International Journal of Optimization and Control: Theories & Applications (IJOCTA) 7(2): 186-194.

Seong, H.Y. & Majid, Z.A. 2015. Solving neutral delay differential equations of pantograph type by using multistep block method. In 2015 International Conference on Research and Education in Mathematics (ICREM7). pp. 56-60.

Süli, E. & Mayers, D.F. 2003. An Introduction to Numerical Analysis. New York: Cambridge University Press.

Wang, W.S. & Li, S.F. 2007. On the one-leg θ-methods for solving nonlinear neutral functional differential equations. Applied Mathematics and Computation 193(1): 285-301.

Wang, W., Zhang, Y. & Li, S. 2009. Stability of continuous Runge-Kutta-Type methods for nonlinear neutral delay differential equations. Applied Mathematical Modelling 33(8): 3319-3329.

 

*Pengarang untuk surat-menyurat; email: am_ zana@upm.edu.my

 

 

 

 

sebelumnya