Sains Malaysiana 43(5)(2014): 783–790

 

Effect of Calcination Temperatures of CaO/Nb2O5 Mixed Oxides Catalysts on

Biodiesel Production

(Kesan Suhu Pengkalsinan Oksida Campuran CaO/Nb2O5 ke atas Penghasilan Biodiesel)

 

 

Y.C. WONG1, Y.P. TAN*2, Y.H. TAUFIQ-YAP2& I. RAMLI1

 

1Centre of Excellence for Catalysis Science and Technology, Universiti Putra Malaysia

43400 Serdang, Selangor Darul Ehsan, Malaysia

 

2Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 27 December 2012/Accepted: 26 August 2013

 

ABSTRACT

Calcination temperature greatly influences the total basicity and surface area of catalysts. Investigations were conducted on calcium and niobium (CaO-Nb2O5) mixed oxides catalysts prepared via conventional solid state method (oxides were mixed and ground in agate mortar) and calcined at different temperatures ranging from 300-800oC for 5 h. The catalysts were then characterized by using X-ray diffraction (XRD), CO2 temperature-programmed desorption (TPD-CO2), Brunauer-Emmett-Teller (BET) surface area analyzer and scanning electron microscope (SEM). The formation of Ca(OH)2 and CaCO3 at lower calcination temperatures (< 600oC) reduced the surface area of the catalyst and masked the basic active sites, hence lowered the total basicity of the catalyst. Besides, low surface area and total basicity were observed at higher calcination temperatures (> 600oC), due to sintering of the fine crystals, which promotes cluster agglomeration. Thus, the optimum calcination temperature for CaO/Nb2O5 mixed oxides was 600oC, which produced the largest surface area (7 m2/g) and total basicity (1301 μmol/g). The biodiesel was produced via transesterification of palm oil, methanol and the catalysts calcined at various temperatures. CaO/Nb2O5 mixed oxide calcined at 600oC showed the highest biodiesel conversion (98%) with methanol/oil molar ratio of 12, 3 wt.% of catalyst, a reaction temperature of 65oC and reaction time of 2 h.

 

Keywords: Biodiesel; calcium oxide; niobium oxide; palm oil; transesterification

 

ABSTRAK

Suhu pengkalsinan mempengaruhi jumlah luas permukaan dan jumlah kebesan pemangkin. Kajian ini telah dilakukan ke atas campuran oksida CaO/Nb2O5 yang disediakan dengan menggunakan kaedah konvensional keadaan pepejal (oksida dicampur dan dikisar dalam mortar batu akik) dan dikalsin pada julat suhu daripada 300-800oC selama 5 jam. Pencirian pemangkin telah dilakukan dengan menggunakan kaedah pembelauan sinar-X (XRD), mikroskop imbasan elekron (SEM), TPD-CO2 dan analisis Brunauer-Emmett-Teller (BET). Pada suhu pengkalsinan yang lebih rendah (< 600oC), pembentukan Ca(OH)2 dan CaCO3 akan menyebabkan jumlah luas permukaan pemangkin berkurang. Selain itu, suhu pengkalsinan yang lebih tinggi (> 600oC) menyebabkan kekurangan dalam jumlah luas permukaan dan jumlah kebesan pemangkin kerana suhu pengkalsinan yang tinggi akan menyebabkan taburan pemangkin halus menjadi kelompok. Suhu pengkalsinan optimum bagi campuran oksida CaO/Nb2O5 adalah 600oC dengan jumlah luas permukaan (7 m2/g) dan jumlah kebesan (1301 μmol/g). Biodiesel dihasilkan melalui transesterifikasi minyak sawit, metanol dan pemangkin yang dikalsin pada pelbagai suhu. Campuran oksida CaO/Nb2O5 yang dikalsin pada suhu 600oC menunjukkan hasil biodiesel yang paling tinggi, 98% dengan nisbah metanol/ minyak kelapa sawit 12, pemangkin 3 %bt, suhu tindak balas 65oC dan masa tindak balas selama 2 jam.

 

Kata kunci: Biodiesel; kalsium oksida; minyak sawit; niobium oksida; transesterifikasi

REFERENCES

 

Alamu, O.J., Waheed, M.A. & Jekayinfa, S.O. 2008. Effect of ethanol-palm kernel oil ratio on alkali-catalyzed biodiesel yields. Fuel 87: 1529-1533.

Albuquerque, M.C.G., Azevedo, D.C.S., Cavalcante Jr., C.L., Santamaría-González, J., Mérida-Robles, J.M., Moreno-Tost, R., Rodríguez-Castellón, E., Jiménez-López, A. & Maireles- Torres, P. 2009. Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts. Journal of Molecular Catalysis A: Chemical 300: 19-24.

Boey, P.L., Maniam, G.P. & Abd Hamid, S. 2011. Performance of calcium oxide as a heterogeneous catalyst in biodiesel production: A review. Chemical Engineering Journal 168: 15-22.

Boynton, R.S. 1980. Chemistry and Technology of Lime and Limestone. 2nd ed. New York: John Wiley & Sons.

Brito, A., Borges, M.E. & Otero, N. 2007. Zeolite Y as a heterogeneous catalyst in biodiesel production from used vegetable oil. Energy Fuel 21: 3280-3283.

Chung, K.H., Chang, D.R. & Park, B.G. 2008. Removal of free fatty acid in waste frying oil by esterification with methanol on zeolite catalysts. Bioresource Technology 99: 123-130.

Dmytryshyn, S.L., Dalai, A.K. & Chaudhari, S.T. 2004. Synthesis and characterization of vegetable oil derived esters: Evaluation for their diesel additive properties. Bioresource Technology 98: 1724-1733.

Dorado, M.P., Ballesteros, E., Arnal, J.M., Gómez, J. & López, F.J. 2003. Exhaust emissions from a diesel engine fueled with transesterified waste olive oil. Fuel 82: 1311-1315.

Granados, M.L., Poves, M.D.Z., Alonso, D.M., Mariscal, R., Galisteo, F.C., Moreno-Tost, R., Santamaria, J. & Fierro, J.L.G. 2007. Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental 73: 317-326.

Jitputti, J., Kitiyanan, B., Rangsuvigit, P., Bunyakiat, K., Attanatho, L. & Jenvanitpanjakul, P. 2006. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal 116: 61-66.

Kouzu, M., Yamasaka, S., Hidaka, J. & Tsunomori, M. 2009. Heterogeneous catalysis of calcium oxide used for tranesterification of soybean oil with refluxing methanol. Applied Catalysis A: General 355: 94-99.

Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, M., Yamanaka, S. & Hidaka, J. 2008. Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87: 2798-2806.

Lim, B.P., Maniam, G.P. & Hamid, S.A. 2009. Biodiesel from adsorbed waste oil on spent bleaching clay using CaO as a heterogeneous catalyst. European Journal of Scientific Research 33: 347-357.

Ngamcharussrivichai, C., Totarat, P. & Bunyakiat, K. 2008. Ca and Zn mixed oxide as a heterogeneous base catalyst for transesterification of palm kernel oil. Applied Catalysis A: General 341: 77-85.

Patil, P.D. & Deng, S. 2009. Transesterification of camelina sativa oil using heterogeneous metal oxide catalysts. Energy Fuels 23: 4619-4624.

Patterson, A.L. 1939. The schrrer formula for X-ray particle size determination. Physical Review 56: 978-982.

Paulis, M., Martin, M., Soria, D.B., Diaz, A., Odriozola, J.A. & Montes, M. 1999. Preparation and characterization of niobium oxide for the catalytic aldol condensation of acetone. Applied Catalysis A: General 180: 411-420.

Ristic, M., Popovic, S. & Music, S. 2004. Sol-gel synthesis and characterization of Nb2O5 powders. Materials Letters 58: 2658-2663.

Rownaghi, A.A., Taufiq-Yap, Y.H. & Rezaei, F. 2009. Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation. Chemical Engineering Journal 155: 514-522.

Sasidharan, M. & Kumar, R. 2004. Transesterification over various zeolites under liquid-phase conditions. Journal of Molecular Catlaysis A: Chemical 210: 93-98.

Sharma, Y.C., Singh, B. & Korstad, J. 2011. Latest development on application of heterogeneous basic catalysts for an efficient and eco-friendly synthesis of biodiesel: A review. Fuel 90: 1309-1324.

Silva, C.C.C.M., Ribeiro, N.F.P., Souza, M.M.V.M. & Aranda, D.A.G. 2010. Biodiesel production from soybean oil and methanol using hydrotalcites as catalyst. Fuel Processing Technology 91: 205-210.

Verziu, M., Florea, M., Simon, S., Simon, V., Filip, P., Parvulescu, V.I. & Hardacre, C. 2009. Transesterification of vegetable oils on basic large mesoporous alumina supported alkaline fluorides-evidences of the nature of the active site and catalytic performances. Journal of Catalysis 263: 56-66.

Vicente, G., Martínez, M. & Aracil, J. 2007. Optimization of integrated biodiesel production, part I. a study of the biodiesel purity and yields. Bioresource Technology 98: 1724-1733.

Wang, G., Liu, G., Xu, M., Yang, Z., Liu, Z., Liu, Y., Chen, S. & Wang, L. 2008. Ti-MCM-41 supported phosphotungtics acid: An effective and environmentally benign catalyst for epoxidation of styrene. Applied Surface Science 255: 2632- 2640.

Xie, W., Peng, H. & Chen, L. 2006. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid –base catalyst. Applied catalysis A: General 300: 67-74.

Zabeti, M., Daud, W.M.A.W. & Aroua, M.K. 2009. Activity of solid catalysts for biodiese production: A review. Fuel Processing Technology 90: 770-777.

 

 

*Corresponding author; email: yptan@upm.edu.my

 

 

previous