Sains Malaysiana 43(5)(2014):
783–790
Effect of Calcination Temperatures of CaO/Nb2O5 Mixed
Oxides Catalysts on
Biodiesel Production
(Kesan Suhu Pengkalsinan Oksida Campuran CaO/Nb2O5 ke atas Penghasilan
Biodiesel)
Y.C. WONG1, Y.P. TAN*2, Y.H. TAUFIQ-YAP2& I.
RAMLI1
1Centre of Excellence for Catalysis Science and Technology,
Universiti Putra Malaysia
43400 Serdang, Selangor Darul Ehsan, Malaysia
2Department of Chemistry, Faculty of Science, Universiti Putra
Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
Received: 27 December 2012/Accepted: 26 August 2013
ABSTRACT
Calcination temperature greatly influences the total basicity and
surface area of catalysts. Investigations were conducted on calcium and niobium
(CaO-Nb2O5)
mixed oxides catalysts prepared via conventional solid state method (oxides
were mixed and ground in agate mortar) and calcined at different temperatures
ranging from 300-800oC for 5 h. The catalysts were then
characterized by using X-ray diffraction (XRD), CO2 temperature-programmed
desorption (TPD-CO2),
Brunauer-Emmett-Teller (BET) surface area analyzer and scanning
electron microscope (SEM). The formation of Ca(OH)2 and CaCO3 at lower calcination
temperatures (< 600oC) reduced the surface area of the catalyst
and masked the basic active sites, hence lowered the total basicity of the
catalyst. Besides, low surface area and total basicity were observed at higher
calcination temperatures (> 600oC), due to sintering of the fine
crystals, which promotes cluster agglomeration. Thus, the optimum calcination
temperature for CaO/Nb2O5 mixed oxides was 600oC,
which produced the largest surface area (7 m2/g) and total basicity
(1301 μmol/g). The biodiesel was produced via
transesterification of palm oil, methanol and the catalysts calcined at various
temperatures. CaO/Nb2O5 mixed oxide calcined at
600oC
showed the highest biodiesel conversion (98%) with methanol/oil molar ratio of
12, 3 wt.% of catalyst, a reaction temperature of 65oC and reaction
time of 2 h.
Keywords: Biodiesel; calcium oxide; niobium oxide; palm oil;
transesterification
ABSTRAK
Suhu pengkalsinan mempengaruhi jumlah luas permukaan dan jumlah
kebesan pemangkin. Kajian ini telah dilakukan ke atas campuran oksida CaO/Nb2O5 yang
disediakan dengan menggunakan kaedah konvensional keadaan pepejal (oksida
dicampur dan dikisar dalam mortar batu akik) dan dikalsin pada julat suhu
daripada 300-800oC selama 5 jam. Pencirian pemangkin telah
dilakukan dengan menggunakan kaedah pembelauan sinar-X (XRD), mikroskop imbasan
elekron (SEM), TPD-CO2 dan
analisis Brunauer-Emmett-Teller (BET). Pada suhu pengkalsinan yang lebih rendah
(< 600oC),
pembentukan Ca(OH)2 dan CaCO3 akan menyebabkan jumlah
luas permukaan pemangkin berkurang. Selain itu, suhu pengkalsinan yang lebih
tinggi (> 600oC) menyebabkan kekurangan dalam jumlah
luas permukaan dan jumlah kebesan pemangkin kerana suhu pengkalsinan yang
tinggi akan menyebabkan taburan pemangkin halus menjadi kelompok. Suhu
pengkalsinan optimum bagi campuran oksida CaO/Nb2O5 adalah 600oC
dengan jumlah luas permukaan (7 m2/g) dan jumlah kebesan (1301
μmol/g). Biodiesel dihasilkan melalui transesterifikasi minyak sawit,
metanol dan pemangkin yang dikalsin pada pelbagai suhu. Campuran oksida CaO/Nb2O5 yang
dikalsin pada suhu 600oC menunjukkan hasil biodiesel yang
paling tinggi, 98% dengan nisbah metanol/ minyak kelapa sawit 12, pemangkin 3
%bt, suhu tindak balas 65oC dan masa tindak balas selama 2 jam.
Kata kunci: Biodiesel; kalsium oksida; minyak
sawit; niobium oksida; transesterifikasi
REFERENCES
Alamu, O.J., Waheed, M.A. & Jekayinfa, S.O.
2008. Effect of ethanol-palm kernel oil ratio on alkali-catalyzed biodiesel
yields. Fuel 87: 1529-1533.
Albuquerque, M.C.G., Azevedo, D.C.S., Cavalcante
Jr., C.L., Santamaría-González, J., Mérida-Robles, J.M., Moreno-Tost, R.,
Rodríguez-Castellón, E., Jiménez-López, A. & Maireles- Torres, P. 2009.
Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts. Journal
of Molecular Catalysis A: Chemical 300: 19-24.
Boey, P.L., Maniam, G.P. & Abd Hamid, S.
2011. Performance of calcium oxide as a heterogeneous catalyst in biodiesel
production: A review. Chemical Engineering Journal 168: 15-22.
Boynton, R.S. 1980. Chemistry and Technology
of Lime and Limestone. 2nd ed. New York: John Wiley & Sons.
Brito, A., Borges, M.E. & Otero, N. 2007.
Zeolite Y as a heterogeneous catalyst in biodiesel production from used
vegetable oil. Energy Fuel 21: 3280-3283.
Chung, K.H., Chang, D.R. & Park, B.G. 2008.
Removal of free fatty acid in waste frying oil by esterification with methanol
on zeolite catalysts. Bioresource Technology 99: 123-130.
Dmytryshyn, S.L., Dalai, A.K. & Chaudhari,
S.T. 2004. Synthesis and characterization of vegetable oil derived esters:
Evaluation for their diesel additive properties. Bioresource Technology 98:
1724-1733.
Dorado, M.P., Ballesteros, E., Arnal, J.M.,
Gómez, J. & López, F.J. 2003. Exhaust emissions from a diesel engine fueled
with transesterified waste olive oil. Fuel 82: 1311-1315.
Granados, M.L., Poves, M.D.Z., Alonso, D.M.,
Mariscal, R., Galisteo, F.C., Moreno-Tost, R., Santamaria, J. & Fierro,
J.L.G. 2007. Biodiesel from sunflower oil by using activated calcium oxide. Applied
Catalysis B: Environmental 73: 317-326.
Jitputti, J., Kitiyanan, B., Rangsuvigit, P.,
Bunyakiat, K., Attanatho, L. & Jenvanitpanjakul, P. 2006.
Transesterification of crude palm kernel oil and crude coconut oil by different
solid catalysts. Chemical Engineering Journal 116: 61-66.
Kouzu, M., Yamasaka,
S., Hidaka, J. & Tsunomori, M. 2009. Heterogeneous catalysis of calcium
oxide used for tranesterification of soybean oil with refluxing methanol. Applied
Catalysis A: General 355: 94-99.
Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, M., Yamanaka,
S. & Hidaka, J. 2008. Calcium oxide as a solid base catalyst for
transesterification of soybean oil and its application to biodiesel production. Fuel 87: 2798-2806.
Lim, B.P., Maniam, G.P. & Hamid, S.A. 2009. Biodiesel
from adsorbed waste oil on spent bleaching clay using CaO as a heterogeneous
catalyst. European Journal of Scientific Research 33: 347-357.
Ngamcharussrivichai, C., Totarat, P. & Bunyakiat, K.
2008. Ca and Zn mixed oxide as a heterogeneous base catalyst for
transesterification of palm kernel oil. Applied Catalysis A: General 341:
77-85.
Patil, P.D. & Deng, S. 2009. Transesterification of
camelina sativa oil using heterogeneous metal oxide catalysts. Energy Fuels 23:
4619-4624.
Patterson, A.L. 1939. The schrrer formula for X-ray particle
size determination. Physical Review 56: 978-982.
Paulis, M., Martin, M., Soria, D.B., Diaz, A., Odriozola,
J.A. & Montes, M. 1999. Preparation and characterization of niobium oxide
for the catalytic aldol condensation of acetone. Applied Catalysis A:
General 180: 411-420.
Ristic, M., Popovic, S. & Music, S. 2004. Sol-gel
synthesis and characterization of Nb2O5 powders. Materials
Letters 58: 2658-2663.
Rownaghi, A.A., Taufiq-Yap, Y.H. & Rezaei, F. 2009.
Solvothermal synthesis of vanadium phosphate catalysts for n-butane oxidation. Chemical
Engineering Journal 155: 514-522.
Sasidharan, M. & Kumar, R. 2004. Transesterification
over various zeolites under liquid-phase conditions. Journal of Molecular
Catlaysis A: Chemical 210: 93-98.
Sharma, Y.C., Singh, B. & Korstad, J. 2011. Latest
development on application of heterogeneous basic catalysts for an efficient
and eco-friendly synthesis of biodiesel: A review. Fuel 90: 1309-1324.
Silva, C.C.C.M., Ribeiro, N.F.P., Souza, M.M.V.M. &
Aranda, D.A.G. 2010. Biodiesel production from soybean oil and methanol using
hydrotalcites as catalyst. Fuel Processing Technology 91: 205-210.
Verziu, M., Florea, M., Simon, S., Simon, V., Filip, P.,
Parvulescu, V.I. & Hardacre, C. 2009. Transesterification of vegetable oils
on basic large mesoporous alumina supported alkaline fluorides-evidences of the
nature of the active site and catalytic performances. Journal of Catalysis 263:
56-66.
Vicente, G., Martínez, M. & Aracil, J. 2007.
Optimization of integrated biodiesel production, part I. a study of the
biodiesel purity and yields. Bioresource Technology 98: 1724-1733.
Wang, G., Liu, G., Xu, M., Yang, Z., Liu, Z., Liu, Y., Chen,
S. & Wang, L. 2008. Ti-MCM-41 supported phosphotungtics acid: An effective
and environmentally benign catalyst for epoxidation of styrene. Applied
Surface Science 255: 2632- 2640.
Xie, W., Peng, H. & Chen, L. 2006. Transesterification
of soybean oil catalyzed by potassium loaded on alumina as a solid –base
catalyst. Applied catalysis A: General 300: 67-74.
Zabeti, M., Daud, W.M.A.W. & Aroua, M.K. 2009. Activity
of solid catalysts for biodiese production: A review. Fuel Processing
Technology 90: 770-777.
*Corresponding
author; email: yptan@upm.edu.my
|