Sains Malaysiana 45(3)(2016): 451–458
Hydrogen Peroxide Induces Acute
Injury and Up-regulates Inflammatory Gene Expression in Hepatocytes:
An in vitro Model
(Hidrogen Peroksida Mengaruh Kecederaan
Akut dan Mengatur Naik Ekspresi Gen Inflamasi dalam Hepatosit: Suatu
Model in vitro)
LING LING
LIAU1,
MAKPOL
SUZANA2,
ABDUL
GHANI
NUR
AZURAH3
& KIEN HUI CHUA1*
1Department
of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia,
Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
2Department of Biochemistry,
Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob
Latif, 56000 Kuala Lumpur, Malaysia
3Department of Obstetrics
and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia
Jalan
Yaacob Latif, 56000 Kuala Lumpur, Malaysia
Received: 19 April
2015/Accepted: 28 September 2015
ABSTRACT
In the past, many in
vitro hepatocyte injury models developed for liver regeneration
used carbon tetrachloride as irritant chemical. Recently, carbon
tetrachloride usage was prohibited due to serious deleterious effects
to human and environment. There is an urgent need to develop a new
acute chemical-induced hepatocyte injury model using other chemical
compound to replace carbon tetrachloride. In this study, we used
hydrogen peroxide (H2O2)
to induced hepatocyte injury with HepG2 as the liver
cell model. HepG2 injury was established by exposing
the cells to CC50 of
H2O2 at
the concentration of 2.4 mM, predetermined via MTT assay
for 2 h exposure. Aspartate aminotransferase (AST)
activity was measured to determine the extent of cellular injury
and quantitative PCR was carried out to determine the expression of inflammatory
genes of the cells 24 h after H2O2 exposure.
The results showed that AST activity increased with time and
peak at 24 h after H2O2 exposure.
Quantitative PCR analysis demonstrated that expression of inflammatory
genes (TGF-β1, MMP-3, NF-κβ,
IL-8
and IL-6) increased significantly. In addition, the gene expression
of GPX, an anti-oxidant enzyme was also increased significantly
in response to oxidative stress. In summary, H2O2 demonstrated
excellent capability in inducing oxidative injury to HepG2
and together they represent an ideal acute chemical-induced injury
model that can be used for liver regeneration study. Our results
also provide input for inflammatory gene expression in the hepatocyte
injury model.
Keywords: Hepatocytes; H2O2; inflammatory
genes; in vitro; liver injury model
ABSTRAK
Banyak model kecederaan hepatosit
in vitro yang telah dibangunkan untuk kajian regenerasi hepar
pada masa lalu adalah berdasarkan kepada iritasi karbon tetraklorida.
Kebelakangan ini, karbon tetraklorida telah dilarang penggunaaannya
disebabkan ia boleh membawa kemudaratan kepada manusia dan persekitaran.
Maka, satu model kecederaan hepatosit akut aruhan bahan kimia yang
baru untuk menggantikan karbon tetraklorida kepada bahan kimia lain
perlu dibangunkan dengan kadar segera. Dalam kajian ini, kami menggunakan
hidrogen peroksida (H2O2)
untuk mengaruh kecederaan hepatosit dengan menggunakan HepG2
sebagai model sel hepar. Kecederaan HepG2 diaruh dengan
mendedahkan sel kepada CC50 H2O2 pada
kepekatan 2.4 mM yang telah dipratentukan melalui asai MTT selama
2 jam pendedahan. Aktiviti aspartat transaminase (AST)
diukur untuk menentukan tahap kecederaan sel dan PCR kuantitatif
dijalankan untuk menentukan ekspresi gen-gen inflamasi pada masa
24 jam selepas pendedahan kepada H2O2.
Hasil kajian mendapati aktiviti AST meningkat dengan masa dan
mencapai puncak kepekatan pada masa 24 jam selepas pendedahan kepada
H2O2.
PCR
kuantitatif menunjukkan peningkatan ekspresi gen-gen
inflammasi (TGF-β1,
MMP-3,
NF-κβ,
IL-8
and IL-6) secara signifikan. Selain itu, ekspresi
gen GPX, sejenis enzim antioksidan juga meningkat secara signifikan
sebagai respons kepada tekanan oksidatif. Secara kesimpulan, H2O2 menunjukkan
keupayaan yang baik untuk mengaruh kecederaan oksidatif pada HepG2
dan kombinasi H2O2 dengan
HepG2 menghasilkan model kecederaan hepatosit akut aruhan
bahan kimia yang ideal untuk kajian regenerasi hepar. Di samping
itu, hasil kajian ini juga memberi input terhadap ekspresi gen inflamasi
dalam model kecederaan hepatosit.
Kata kunci: Gen inflamasi; hepatosit; H2O2; in vitro; model kecederaan
hepatosit
REFERENCES
Alía, M., Ramos,
S., Mateos, R., Bravo, L. & Goya, L. 2005. Response of the antioxidant
defense system to tert-butyl hydroperoxide and hydrogen peroxide
in a human hepatoma cell line (HepG2). Journal of
Biochemical and Molecular Toxicology 19(2): 119-128.
Bansal, M.B., Kovalovich,
K., Gupta, R., Li, W., Agarwal, A., Radbill, B., Alvarez, C.E.,
Safadi, R., Fiel, M.I., Friedman, S.L. & Taub, R.A. 2005. Interleukin-6
protects hepatocytes from CCl4-mediated necrosis and apoptosis in
mice by reducing MMP-2 expression. J. Hepatol. 42(4): 548-556.
Bernal, W., Auzinger,
G., Dhawan, A. & Wendon, J. 2010. Acute liver failure. The
Lancet 376(9736): 190-201.
Cesaratto, L.,
Vascotto, C., Calligaris, S. & Tell, G. 2004. The importance
of redox state in liver damage. Ann. Hepatol. 3(3): 86-92.
Dong, W., Simeonova,
P.P., Gallucci, R., Matheson, J., Flood, L., Wang, S., Hubbs, A.
& Luster, M.I. 1998. Toxic metals stimulate inflammatory cytokines
in hepatocytes through oxidative stress mechanisms. Toxicology
and Applied Pharmacology 151(2): 359-366.
Galun, E. &
Axelrod, J.H. 2002. The role of cytokines in liver failure and regeneration:
Potential new molecular therapies. Biochimica et Biophysica Acta
(BBA)-Molecular Cell Research 1592(3): 345-358.
Hartley, J.L. &
Kelly, D.A. 2010. End stage liver failure. Paediatrics and Child
Health 20(1): 30-35.
Herlong, H.F. 1994.
Approach to the patient with abnormal liver enzymes. Hospital
Practice 29(11): 32-38.
Hewitt, N. &
Hewitt, P. 2004. Phase I and II enzyme characterization of two sources
of HepG2 cell lines. Xenobiotica 34(3): 243-256.
Hill, D., Marsano,
L., Cohen, D., Allen, J., Shedlofsky, S. & McClain, C. 1992.
Increased plasma interleukin-6 concentrations in alcoholic hepatitis.
The Journal of Laboratory and Clinical Medicine 119(5): 547-552.
Jeong, W.I., Do, S.H., Jeong, D.H.,
Hong, I.H., Park, J.K., Ran, K.M., Yang, H.J., Yuan, D.W., Kim, S.B., Cha, M.S. & Jeong, K.S. 2006.
Kinetics of MMP-1 and MMP-3 produced by mast
cells and macrophages in liver fibrogenesis of rat. Anticancer
Research 26(5A): 3517-3526.
Kanebratt, K.P.
& Andersson, T.B. 2008. Evaluation of HepaRG cells as an in
vitro model for human drug metabolism studies. Drug Metabolism
and Disposition 36(7): 1444-1452.
Knittel, T., Mehde,
M., Grundmann, A., Saile, B., Scharf, J.G. & Ramadori, G. 2000.
Expression of matrix metalloproteinases and their inhibitors during
hepatic tissue repair in the rat. Histochemistry and Cell Biology
113(6): 443-453.
Li, G.P., Wu, L.F.
& Pu, Z.J. 2008. Oxidative stress induces apoptosis in HepG2
cells. Chinese Journal of Pathophysiology 24(1): 105-111.
Marion, M.J., Hantz,
O. & Durantel, D. 2010. The HepaRG cell line: Biological properties
and relevance as a tool for cell biology, drug metabolism, and virology
studies. In Hepatocytes, edited by Maurel, P. New York: Springer.
pp. 261-272.
McElwee, M.K.,
Song, M.O. & Freedman, J.H. 2009. Copper activation of NF-κB
signaling in HepG2 cells. Journal of Molecular Biology
393(5): 1013-1021.
Merrill, C.L.,
Ni, H., Yoon, L.W., Tirmenstein, M.A., Narayanan, P., Benavides,
G.R., Easton, M., Creech, D.R., Hu, C.X. & McFarland, D.C. 2002.
Etomoxir-induced oxidative stress in HepG2 cells detected
by differential gene expression is confirmed biochemically. Toxicological
Sciences 68(1): 93-101.
Mitra, V. &
Metcalf, J. 2009. Metabolic functions of the liver. Anaesthesia
& Intensive Care Medicine 10(7): 334-335.
Okamura, M., Hashimoto,
K., Shimada, J. & Sakagami, H. 2004. Apoptosis-inducing activity
of cisplatin (CDDP) against human hepatoma and oral squamous cell
carcinoma cell lines. Anticancer Research 24(2B): 655-662.
Oliveira, F.S.,
Silveira, T.R. & Matte, U. 2012. Relationship between serum
transforming growth factor ß1 and liver collagen content in rats
treated with carbon tetrachloride. Arquivos de Gastroenterologia
49(3): 232-234.
Poli, G. &
Parola, M. 1997. Oxidative damage and fibrogenesis. Free Radical
Biology and Medicine 22(1-2): 287-305.
Reeves, H.L. &
Friedman, S.L. 2002. Activation of hepatic stellate cells-a key
issue in liver fibrosis. Front. Biosci. 7(4): 808-826.
Sahreen, S., Khan,
M.R. & Khan, R.A. 2011. Hepatoprotective effects of methanol
extract of Carissa opaca leaves on CCl4- induced damage in
rat. BMC Complementary and Alternative Medicine 11: 48.
Salazar-Montes,
A., Delgado-Rizo, V. & Armendáriz-Borunda, J. 2000. Differential
gene expression of pro-inflammatory and anti-inflammatory cytokines
in acute and chronic liver injury. Hepatology Research 16(3):
181-194.
Selzner, M., Graf,
R. & Clavien, P.A. 2003. IL-6: A magic potion for liver transplantation?
Gastroenterology 125(1): 256-259.
Sun, Y., Tokushige,
K., Isono, E., Yamauchi, K. & Obata, H. 1992. Elevated serum
interleukin-6 levels in patients with acute hepatitis. Journal
of Clinic Immunology 12(3): 197-200.
Weber, L.W.D.,
Boll, M. & Stampfl, A. 2003. Hepatotoxicity and mechanism of
action of haloalkanes: Carbon tetrachloride as a toxicological model.
CRC Critical Reviews in Toxicology 33(2): 105-136.
Wu, J., Danielsson, Å. & Zern, M. A. 1999. Toxicity of hepatotoxins:
new insights into mechanisms and therapy. Expert Opinion on Investigational
Drugs 8(5): 585-607.
*Corresponding author; email: ckienhui@hotmail.com
|