Sains Malaysiana
49(10)(2020):
2411-2424
http://dx.doi.org/10.17576/jsm-2020-4910-07
Morpho-Physiological
and Anatomical Character Changes of Rice Under Waterlogged and Water-Saturated
Acidic and High Fe Content Soil
(Morfo-Fisiologi
dan Perubahan Ciri Anatomi Padi di bawah Pengelogan Air dan Tanah Air Tepu
Berasid serta Tinggi Kandungan Fe)
T.
TURHADI1, H. HAMIM1, MUNIF GHULAMAHDI2 &
M. MIFTAHUDIN1*
1Plant Biology Graduate Program, Department
of Biology, Faculty of Mathematics and Natural Sciences-Bogor, Agricultural
University (IPB University), Kampus IPB Dramaga, 16680 Bogor, Indonesia
2Department of Agronomy and Horticulture, Faculty
of Agriculture-Bogor Agricultural, University (IPB University), Kampus IPB
Dramaga, 16680 Bogor, Indonesia
Received:
30 January 2020/Accepted: 9 May 2020
ABSTRACT
Waterlogging is one of the limiting factors in crop
cultivation. Moreover, high iron (Fe) content in acidic soils could also
disturb plant growth. However, there is limited scientific information of
morpho-physiological and anatomical responses of rice grown in waterlogged
acidic soils with high Fe. Therefore, the objective of the research was to
investigate the morpho-physiological and anatomical responses of rice to
waterlogged and water-saturated
soil condition in acidic soil with high Fe. Morpho-physiological and anatomical
characters of rice were evaluated. The results showed that the waterlogging in
acidic and high Fe content soil disturbed the rice growth as indicated by the
change of morpho-physiological and anatomical characters. The water-saturated
soil showed better condition for rice cultivation than that of waterlogging.
The plant biomass, root anatomical, lipid peroxidation level, Fe absorption, and leaf gas exchange
parameter could be evidences of changes in rice under both conditions. Based on
the waterlogging tolerance coefficient (WTC), we proposed shoot and root dry weight, cortex thickness, and Fe
content in shoot as screening tools for waterlogging tolerance of rice in
acidic and high Fe content soil. The finding offers insight about waterlogged
condition in acidic and high Fe soil could be restored in crop cultivation.
Keywords:
Leaf gas exchange; root anatomical;
waterlogging; water-saturated
ABSTRAK
Pengelogan air
merupakan salah satu faktor pembatasan dalam penuaian tanaman. Selain itu,
kandungan besi (Fe) yang tinggi dalam tanah yang berasid juga boleh mengganggu
pertumbuhan tanaman. Namun, terdapat maklumat saintifik yang terhad berkenaan
morfo-fisiologi dan tindak balas anatomi terhadap pertumbuhan padi di kawasan
tanah berasid pengelogan air dengan kandungan Fe yang tinggi. Oleh itu,
objektif kajian ini adalah untuk mengkaji morfo-fisiologi dan tindak balas
anatomi padi terhadap pengelogan air dan tanah tepu air dalam keadaan tanah
berasid dengan kandungan Fe yang tinggi. Morfo-fisiologi dan ciri anatomi
dinilai. Keputusan kajian menunjukkan bahawa pengelogan air berasid dan
kandungan Fe yang tinggi di dalam tanah mengganggu pertumbuhan padi seperti
yang ditunjukkan daripada perubahan morfo-fisiologi dan ciri anotomi. Tanah
tepu air menunjukkan keadaan yang lebih baik untuk penuaian padi berbanding
kawasan pengelogan air. Biojisim tumbuhan, anatomi akar, tahap pemperoksidaan
lipid, penyerapan Fe dan parameter pertukaran gas daun boleh menjadi bukti
untuk mengkaji perubahan padi di bawah keadaan yang ditetapkan. Berdasarkan
pekali toleransi pengelogan air (WTC), kami mencadangkan berat kering pucuk dan
akar, ketebalan korteks serta kandungan Fe pada pucuk sebagai alat saringan
untuk toleransi pengelogan air padi di kawasan berasid dan kandungan Fe yang
tinggi dalam tanah. Hasil kajian memberikan pandangan berkenaan keadaan
pengelogan air berasid dan kandungan Fe yang tinggi dalam tanah dapat
dipulihkan dalam penuaian tanaman.
Kata kunci: Air
tepu; anatomi akar; pertukaran gas daun; takung air
REFERENCES
Association of
Analytical Communities (AOAC). 2012. Official Methods of
Analysis of AOAC International. 19th Ed. Gaitherburg: AOAC International Suite 500.
Audebert, A. & Sahrawat, K.L. 2000. Mechanisms
for iron toxicity tolerance in lowland rice. Journal of Plant Nutrition 23(11-12): 1877-1885.
Bai, T., Li, C.,
Ma, F., Feng, F. & Shu, H.
2010. Responses of growth and antioxidant system to root-zone hypoxia stress in
two Malus species. Plant and Soil 327(1-2): 95-105.
Bjerre, G.K. & Schierup, H.H. 1985. Uptake of six heavy metals by oat
as influenced by soil type and additions of cadmium, lead, zinc and copper. Plant and Soil 88: 57-69.
Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I. & Martínez-Estévez, M. 2017. Aluminum, a friend or foe of higher
plants in acid soils. Frontiers in Plant
Science 8: 1767.
Boonlertniruna, S., Meechouib, S. & Sarobol, E. 2010. Physiological and morphological
responses of field corn seedlings to chitosan under hypoxic conditions. Scienceasia 36(2): 89-93.
Bramley, H., Tyerman, S.D., Turner, D.W. & Turner, N.C. 2011. Root growth of lupins is more
sensitive to waterlogging than wheat. Functional
Plant Biology 38(11):
910-918.
Cardoso, J.A.,
Rincon, J.,
Jimenez, J.C.,
Noguera, D. & Rao, I.M. 2013.
Morpho-anatomical adaptations to waterlogging by germplasm accessions in a
tropical forage grass. AoB PLANTS 5.
Drew, M.C., He, C.J. & Morgan, P.W. 2000. Programmed
cell death and aerenchyma formation in roots. Trends in Plant Science 5(3): 123-127.
Fu, X.Y., Peng, S.X., Yang, S., Chen, Y.H., Zhang, J.Y., Mo, W.P., Zhu, J.Y., Ye, Y.X. & Huang, X.M. 2012.
Effects of flooding on grafted Annona plants of different scion/rootstock combinations. Agricultural Sciences 3(2):
249-256.
Garthwaite, A.J., Von
Bothmer, R. & Colmer, T.D. 2003.
Diversity in root aeration traits associated with waterlogging tolerance in the
genus Hordeum. Functional Plant Biology 30(8):
875-889.
Ghulamahdi, M., Welly, H.D. & Sagala, D. 2018. Nutrient uptake, growth and
productivity of soybean cultivars at two water depths under saturated soil
culture in tidal swamps. Pakistan Journal
of Nutrition 17(3): 124-130.
Ghulamahdi, M., Chaerunisa, S.R., Lubis, I. & Taylor, P. 2016. Response of five soybean varieties
under saturated soil culture and temporary flooding on tidal swamp. Procedia Environmental Science 33: 87-93.
Ghulamahdi, M., Aziz, S.A. & Makarim, A.K. 2012. Application of saturated soil culture technology to rice and soybean to
increase the planting index in tidal land. In Supporting
Food Sovereignty and Sustainable Energy, edited by Melati, M., Aziz, S.A., Efendi, D., Armini, N.M., Sudarsono, Ekana’ul, N. & Al
Tapsi, S. Symposium and Seminar with Peragi-Perhorti-Peripi-Higi,
Bogor, Indonesia 1-2 May.
Ghulamahdi, M., Aziz, S.A., Melati, M., Dewi, N. & Rais, S.A. 2006. Nitrogenase activity, nutrient uptake, and growth of two soybean varieties
under saturated and dry soil conditions. Indonesian
Journal of Agronomy 34(1): 32-38.
Grzesiak, S., Hura, T., Grzesiak, M.T. & Pieńkowski, S. 1999. The impact of limited soil
moisture and waterlogging stress conditions on morphological and anatomical
root traits in maize (Zea mays L.)
hybrids of different drought tolerance. Acta
Physiologiae Plantarum 21(3): 305-315.
Hairmansis,
A., Kustianto, B. & Pane, H. 2012. Development of the new submergence
tolerant rice varieties Inpara 4 and Inpara 5 for flash flood prone areas. Jurnal Penelitian dan Pengembangan Pertanian 31(1): 1-7.
Harahap, S.M. 2014.
Adaptation mechanism and accumulation of Fe and Al suppression to increase rice
productivity on tidal land. IPB University, Ph.D. Thesis (Unpublished).
Hidayati,
N. & Anas, I. 2016. Photosynthesis
and transpiration rates of rice cultivated under the system
of rice intensification and the effects on growth and yield. HAYATI Journal of Bioscience 23(2):
67-72.
Horchani, F. & Aschi-Smiti, S. 2010. Prolonged root hypoxia effects on
enzymes
involved in nitrogen assimilation pathway in tomato plants. Plant Signaling & Behavior 5(12):
1583-1589.
Iu, K.L.,
Pulford, L.D. & Duncan, H.J. 1982. Influence of soil waterlogging on subsequent plant growth and trace metal
content. Plant and Soil 66(3):
423-427.
Jiménez, J.C.,
Cardoso, J.A.,
Arango-Londoño, D.,
Fischer, G. & Rao, I. 2015. Influence of soil fertility on
waterlogging tolerance of two Brachiaria grasses. Agronomía Colombiana 33(1):
20-28.
Khabaz-Saberi, H. & Rengel, Z. 2010. Aluminum, manganese, and iron
tolerance improves performance of wheat genotypes in waterlogged acidic soils. Journal of Plant Nutrition and Soil Science 173(3): 461-468.
Khabaz-Saberi, H., Setter, T.L. & Waters, I. 2006. Waterlogging induces high to toxic
concentrations of iron, aluminum, and manganese in wheat varieties on acidic
soil. Journal of Plant Nutrition 29(5):
899-911.
Lichtenthaler, H.K. 1987.
Chlorophylls and carotenoid: Pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382.
Liu, Y.Z., Tang, B., Zheng, Y.L., Ma, K.J., Xu, S.Z. & Qiu, F.Z. 2010.
Screening methods for waterlogging tolerance at maize (Zea mays L.) seedling stage. Agricultural
Science in China 9(3): 362-369.
Malik, A.I.,
Colmer, T.D.,
Lambers, H. & Schortemeyer, M. 2001. Changes in physiological and
morphological traits of roots and shoots of wheat in response to different
depths of waterlogging. Australian
Journal of Plant Physiology 28(11): 1121-1131.
Matin, N.H. & Jalali, M. 2017. The effect of waterlogging on
electrochemical properties and soluble nutrients in paddy soils. Paddy and Water Environment 15(2):
443-455.
Matsuura, A., An, P.,
Murata, K. & Inanaga, S. 2016. Effect of pre- and post-heading waterlogging on growth and grain yield
of four millets. Plant Production Science 19(3):
348-359.
Nguyen, H.T.,
Fischer, K.S.
& Fukai, S. 2009. Physiological responses to
various water saving systems in rice. Field Crops Research 112(2-3): 189-198.
Nishiuchi, S., Yamauchi, T., Takahashi, H., Kotula, L. & Nakazono, M. 2012. Mechanisms for coping with
submergence and waterlogging in rice. Rice 5(1): 2.
Noya, A.I. 2014.
Soybean adaptation on acid sulphate soil with saturated soil culture
technology. IPB University, Ph.D.
Thesis (Unpublished).
Nugraha, Y. & Rumanti, I.A. 2017. Breeding for rice variety tolerant to
iron toxicity. Iptek
Tanaman Pangan 12(1): 9-24.
Quinet, M., Vromman, D., Clippe, A., Bertin, P., Lequeux, H., Dufey, I., Lutts, S. & Lefèvre, I. 2012. Combined transcriptomic and physiological approaches reveal strong differences between short- and long-term response of rice (Oryza sativa) to iron toxicity. Plant, Cell
& Environment 35(10):
1837-1859.
Rachmawati, D., Maryani, M.M., Kusumadewi, S. & Rahayu, F. 2019. Survival
and root structure changes of rice seedlings in different cultivars under
submergence condition. Biodiversitas 20(10): 3011-3017.
Sagala, D., Ghulamahdi, G., Trikoesoemaningtyas, Lubis, I., Shiraiwa, T. & Homma, K. 2019. Growth
and yield of six soybean genotypes on short-term flooding condition in the
type-B overflow tidal swamps. Indonesian Journal of Agronomy 47(1):
25-31.
Schneider, C.A.,
Rasband, W.S.
& Eliceiri, K.W. 2012. NIH image to ImageJ: 25 years of
image analysis. Nature Methods 9(7): 671-675.
Singh, S.P. & Setter, T.L. 2015.
Effect of waterlogging on element concentrations, growth and yield of wheat
varieties under farmer’s sodic field conditions. Proceedings of the National Academy of Sciences, India Section B:
Biological Sciences 87(2): 513-520.
Singh, S., Mackill, D.J. & Ismail, A.M. 2014.
Physiological basis of tolerance to complete submergence in rice involves
genetic factors in addition to the SUB1 gene. AoB PLANTS 6.
Sitaresmi, T., Suwarno, W.D.,
Rumanti, I.A.,
Ardie, S.W.
& Aswidinnoor, H. 2019. Parameters and secondary
characters for selection of tolerance rice varieties under stagnant flooding
condition. AGRIVITA Journal of
Agricultural Science 41(2):
372-384.
Statistics
Indonesia. 2019a. Purbolinggo Subdistrict
in Figures 2019. Purbolinggo: BPS-Statistics of Lampung Timur Regency.
Statistics
Indonesia. 2019b. Lampung Timur Regency
in Figures 2019. Purbolinggo: BPS-Statistics of Lampung Timur Regency.
Steffens, D., Hütsch, B.W.,
Eschholz, T., Lošák, T. & Schubert, S. 2005. Water logging may inhibit plant growth primarily
by nutrient deficiency rather than nutrient toxicity. Plant, Soil and Environment 51(12):
545-552.
Sundgren, T.K.,
Uhlena, A.K.,
Lillemoa, M.,
Brieseb, C. & Wojciechowski, T.
2018. Rapid seedling establishment and a narrow root stele promotes
waterlogging tolerance in spring wheat. Journal
of Plant Physiology 227: 45-55.
Suralta,
R.R. & Yamauchi, A. 2008. Root growth, aerenchyma development, and oxygen
transport in rice genotypes subjected to drought and waterlogging. Environmental and Experimental Botany 64(1): 75-82.
Turhadi, T., Hamim, H., Ghulamahdi, M. & Miftahudin, M. 2018. Morpho-physiological responses of rice genotypes and
its clustering under hydroponic iron toxicity conditions. Asian Journal of Agriculture
and Biology 6(4): 495-505.
Wang, Y.S., Ding, M.D., Gu, X.G., Wang, J.L., Yunli, P.,
Gao, L.P. & Xia, T. 2013. Analysis of interfering substances in the
measurement of malondialdehid content in plant
leaves. American Journal of Biochemistry
and Biotechnology 9(3): 235-242.
White, J.W. & Molano, C.H. 1994. Production of
common bean under saturated soil culture. Field Crops Research 36(1): 56-58.
Yamauchi, T., Abe, F., Tsutsumi, N. & Nakazono, M. 2019. Root cortex provides a venue for
gas-space formation and is essential for plant adaptation to waterlogging. Frontiers in Plant Science 10: 259.
Yamauchi, T., Tanaka, A., Mori, H., Takamure, I., Kato, K. & Nakazono, M. 2016. Ethylene-dependent aerenchyma formation in adventitious roots is regulated
differently in rice and maize. Plant,
Cell & Environment 39(10): 2145-2157.
Yavas, I., Unay, A. & Aydin, M. 2012. The waterlogging tolerance of
wheat varieties in western of Turkey. The
Scientific World Journal 2012: 529128.
Zhou, J., Wan, S.W., Li, G. & Qin, P. 2011. Ultrastructure changes of
seedlings of Kosteletzkya virginica under waterlogging conditions. Biologia
Plantarum 55: 493-498.
Zhu, J., Liang, J., Xu, Z., Fan, X., Zhou, Q., Shen, Q. & Xu, G. 2015. Root aeration improves growth and nitrogen accumulation in rice seedlings
under low nitrogen. AoB PLANTS 7.
*Corresponding
author; email: miftahudin@apps.ipb.ac.id
|