Sains Malaysiana 44(7)(2015): 973–977
Modeling of
Sago Starch Hydrolysis Using Glucoamylase
(Pemodelan Hidrolisis Kanji Sagu dengan Glukoamilase)
LONG WEE
LA1I*, FAIZAL YAHAYA1
& MOHAMAD SUFFIAN MOHAMAD
ANNUAR2
1Faculty of Science and Biotechnology,
Universiti Selangor, 45600 Bestari Jaya, Selangor Darul Ehsan, Malaysia
2Institute of Biological
Sciences, Faculty of Science, Universiti
Malaya, 50603, Kuala Lumpur
Malaysia
Diserahkan: 10 Februari 2014/Diterima: 26 Februari 2015
ABSTRACT
A mathematical
model based on Michaelis-Menten kinetics
was proposed and used to simulate the sago starch hydrolysis and
the remaining sago starch concentration. The simulation model was
tested with comparison to the real experimental results. The glucoamylase
enzyme (E.C. 3.2.1.3) from Aspergillus niger was employed in the present study to hydrolyze
the substrate i.e. sago starch into reducing sugars. The experiment
was performed in a two liter (2 L) stirred tank reactor. The quantitative
effects such as temperature, substrate concentration, enzyme amount,
pH and agitation speed were set to optimal value at
, 1.0, 0.2
, pH4.5 and 100
, respectively. The computer software, Polymath® 6.0
was employed in this research. The numerical method based on Runge-Kutta Fehlberg 45 was used to solve the system of non-linear
ordinary differential equations (ODEs)
of sago starch hydrolysis. The model prediction well agreed with
experimental results where the high values of regression coefficient,
=
0.9643 was obtained.
Keywords:
Glucoamylase; Michaelis-Menten
kinetics; sago starch; reducing sugar; simulation model
ABSTRAK
Model
matematik berasaskan
kinetik Michaelis-Menten telah dicadang dan digunakan untuk
mensimulasikan hidrolisis
kanji sagu dan
kepekatan kanji sagu yang tertinggal. Model
simulasi ini
telah diuji dengan
perbandingan keputusan
eksperimen. Enzim glukoamilase (EC 3.2.1.3) daripada
Aspergillus niger
telah pun diguna
pakai dalam kajian
ini bagi tujuan menghidrolisiskan substrat iaitu kanji sagu ke gula
penurun. Eksperimen
ini dijalankan dalam tangki reaktor
2 L. Kesan kuantitatif
seperti suhu, kepekatan
substrat, jumlah
enzim, pH dan kelajuan
perolakan telah
dilaraskan pada nilai optimum iaitu masing-masing, 1.0
,
0.2
, pH4.5 dan 100. Perisian komputer Polymath®
6.0 telah digunakan
dalam penyelidikan
ini. Kaedah berangka berdasarkan
Runge-Kutta Fehlberg 45 juga
digunakan bagi
menyelesaikan sistem persamaan pembezaan biasa tidak linear untuk hidrolisis kanji sagu. Jangkaan keputusan model ini adalah bertepatan dengan keputusan eksperimen dengan nilai pekali regresi
yang tinggi, =
0.9643 telah diperoleh.
Kata
kunci: Glukoamilase;
kinetik Michaelis-Menten; kanji
sagu; gula penurun;
model simulasi
RUJUKAN
Adinarayaan, K.
& Suren, S. 2005. Response surface optimization
of enzymatic hydrolysis of maize starch for higher glucose production.
Biochemical Engineering Journal 27: 179-190.
Doran, P.M. 1995. Bioprocess
Engineering Principles. London: Academic Press Ltd.
Lai, L.W., Teo,
C.L., Wahidin, S. & Annuar,
M.S.M. 2014. Determination of enzyme kinetic parameters on sago starch hydrolysis
by linearized graphical methods. Malaysian Journal of Analytical
Sciences 18(3): 527-533.
Miller, G.L. 1959. Use of DNS reagent for determination
of reducing sugars. Analytical Chemistry 31: 426-428.
Posten, C.
1994. Basic concepts of computer modeling and
optimization in bioprocess application. In
Process computations in biotechnology, edited by Ghose,
T.K. New Delhi: Tata McGraw-Hill Publishing Co. Ltd. pp.
1-49.
Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling,
W.T. 1986. Numerical Recipes: The Art of Scientific Computing. London:
Cambridge University Press.
Singhal,
R.S., Kennedy, J.F., Gopalakrishnan, S.M., Kaczmarek,
A., Knill, C.J. & Akmar,
P.F. 2008.
Industrial production, processing, and utilization of sago palm-derived products.Carbohydrate Polymers 72: 1-20.
Sigma-Alrich. 1995. Product
information protocol: Enzymatic assay of amyloglucosidase
(E.C. 3.2.1.3).
Suraini, A.A. 2002. Review:
Sago starch and its utilization. Journal of Bioscience and Bioengineering
94(6): 526-529.
Swinkels, J.J.M. 1985.
Sources of starch, its chemistry and physics. In Starch Conversion Technology, edited by
VanBeynum, G.M.A. & Roels, J.A. New York: Marcel Dekker, Inc. pp. 15-45.
Wang, W.J., Powell, A.D. & Oates, C.G. 1996. Sago starch as
a biomass source: Raw sago starch hydrolysis by commercial enzymes.
Bioresource Technology 55: 55-61.
Wee,
L.L., Annuar, M.S.M. & Ibrahim, S. 2011a. Short Communication: Energetics of glucoamylase-catalyzed hydrolysis of commercial sago starch.
Asia Pacific Journal of Molecular Biology and Biotechnology 19(4):
117-120.
Wee,
L.L., Annuar, M.S.M., Ibrahim, S. &
Chisti, Y. 2011b. Enzyme-mediated
production of sugar from sago starch: Statistical process optimization.
Chemical Engineering Communications 198(11): 1339-1353.
*Pengarang untuk surat-menyurat; email: zki@unisel.edu.m
|