Sains Malaysiana 46(9)(2017): 1635–1640
http://dx.doi.org/10.17576/jsm-2017-4609-36
Sinteran Hidroksiapatit dalam Atmosfera Nitrogen untuk Peningkatan Sifat Mikrokekerasan
(Sintering of Hydroxyapatite under Nitrogen Atmosphere for
Improved Microhardness)
LEONG
CHEE
HUAN1*,
ANDANASTUTI
MUCHTAR1,
TAN
CHOU
YONG2,
MASFUEH
RAZALI3
& CHIN CHUIN HAO1
1Department of Mechanical and Materials
Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor Darul
Ehsan
Malaysia
2Department of Mechanical Engineering,
Faculty of Engineering, Universiti
Malaya, 50603 Kuala Lumpur, Wilayah Persekutuan, Malaysia
3Periodontology Department, Faculty
of Dentistry, Universiti Kebangsaan
Malaysia, Jalan Raja Muda Abdul Aziz,
50300 Kuala Lumpur, Wilayah Persekutuan, Malaysia
Diserahkan: 17
November 2016/Diterima: 10 Jun 2017
ABSTRAK
Hidroksiapatit (HA) adalah
sejenis kalsium fosfat yang merupakan komposisi kepada kebanyakan fasa mineral tulang dan enamel gigi. HA bersifat
bioserasi dan berkonduksi
osteo selain
mempunyai afiniti biologi dan kimia
yang bagus untuk
tisu tulang. Dengan ciri
tersebut, HA diguna
secara luas
sebagai graf tulang
dan bahan
salut bagi implan
tisu keras
manusia. Walau bagaimanapun, kerapuhan
dan keliatan
patah yang rendah HA tersinter menghadkan penggunaannya dalam aplikasi bebanan yang tinggi. Kajian ini tertumpu kepada
mengenal pasti
kesan atmosfera sinteran dengan gas nitrogen (N2)
ke atas
sifat mekanik
HA untuk
aplikasi pergigian.
Serbuk nano HA dicirikan
dengan menggunakan
mikroskop elektron pancaran. Cakera silinder HA dihasilkan dengan kaedah penekanan ekapaksi. Kemudian, cakera silinder HA dikenakan tekanan isostatik sejuk dan disinter dalam dua atmosfera sinteran
yang berbeza iaitu
sinteran dalam gas N2 dan sinteran dalam
udara pada
suhu 1300°C. Ketumpatan, mikrostruktur, kestabilan
fasa dan
mikrokekerasan HA tersinter
dicirikan. Secara keseluruhan,
sinteran dengan
menggunakan gas N2 menyebabkan pertumbuhan saiz butiran yang lebih besar dengan
ketumpatan relatif
dan mikrokekerasan yang lebih tinggi jika
dibandingkan dengan
atmosfera sinteran dalam udara. Dalam kajian ini,
HA
yang disinter dengan
menggunakan gas N2 pada suhu 1300°C menunjukkan mikrostruktur yang lebih tumpat, ketumpatan
relatif (94%) dan
mikrokekerasan (4.07 GPa) yang lebih tinggi jika
berbanding dengan
sinteran dalam udara tanpa penguraian
HA.
Kesimpulannya, penggunaan
atmosfera sinteran dengan menggunakan gas N2 pada suhu 1300°C dapat meningkatkan sifat kekerasan Vickers nanokomposit HA dengan
mikrostruktur yang padat.
Kata kunci: Atmosfera sinteran; hidroksiapatit; sinteran dengan gas nitrogen
ABSTRACT
Hydroxyapatite (HA)
is a type of calcium phosphate which constitutes most of the
mineral phase of bones and tooth enamel. HA is biocompatible and osteoconductive; it also exhibits excellent chemical and biological
affinity with bone tissues. With these characteristics, HA
has been widely used as bone graft and coating
material for human hard tissue implants. However, the brittleness
and low fracture toughness of sintered HA
limit its capability in load-bearing applications.
This study focuses on determining the effect of sintering in
nitrogen gas (N2)
atmosphere on the mechanical properties of HA.
HA
nanopowders were characterised using
a transmission electron microscope. Next, HA powders
were uniaxially pressed into pellets.
The pellets were then isostatically
cold-pressed and sintered in two types of atmospheres, namely,
sintering in N2 and
sintering in air at 1300°C. The density, microstructure, phase
stability and microhardness of sintered HA were
characterised. Overall, sintering
in N2 led
to the formation of larger grains with higher relative density
and microhardness than sintering in air. In this study, HA
sintered in N2 at 1300°C exhibited more compact
microstructure with higher relative density (94%) and microhardness (4.07 GPa) without
decomposition in comparison to sintering in air. In conclusion,
N2 sintering
at 1300°C improves the Vickers hardness of HA by
yielding a more compact microstructure.
Keywords: Hydroxyapatite; sintering atmosphere; sintering in nitrogen
gas
RUJUKAN
Akbari, B., Pirhadi Tavandashti, M. & Zandrahimi, M. 2011. Particle size characterization of nanoparticles - a practical approach.
Butirannian Journal of Materials
Science & Engineering 8(2): 48-56.
Aminzare, M., Eskandari, A., Baroonian,
M.H., Berenov, A., Razavi
Hesabi, Z., Taheri, M. & Sadrnezhaad,
S.K. 2013. Hydroxyapatite nanocomposites: Synthesis,
sintering and mechanical properties. Ceramics International
39(3): 2197- 2206.
Angelo, P.C. & Subramaniam, R. 2008. Powder Metallurgy. New Delhi: Prentice Hall of India
Private Limited.
Antonio Nanci. 2003. Ten Cate’s Oral
Histology: Development, Structure, and Function. Elsevier:
St Louis.
Anusavice, K.J., Shen, C. & Rawls, H.R. 2013. Phillips’ Science of Dental Materials.
12. Haryana: Elsevier.
Asif, M., Zhengyi, F., Weimin, W., Hao, W., Tiening, T. & Shahzad Ahmad
Khan. 2014. Fluoridation and sintering of hydroxyapatite material and
their mechanical properties. Journal of Wuhan University
of Technology 29: 190-196.
Badica, P., Borodianska, H., Xie, S., Zhao, T., Demirskyi, D.,
Li, P., Tok, A.I.Y., Sakka,
Y. & Vasylkiv, O. 2014. Toughness
control of boron carbide obtained by spark plasma sintering
in nitrogen atmosphere. Ceramics International 40(2):
3053-3061.
Chun, K.J & Lee, J.Y. 2014. Comparative study of mechanical properties
of dental restorative materials and dental hard tissues in compressive
loads. Journal of Dental Biomechanics 5: 1-6.
Curran,
D., Fleming, T., Towler, M. &
Hampshire, S. 2010. Mechanical properties
of hydroxyapatite-zirconia compacts sintered by two different
sintering methods. Journal of Materials Science: Materials
in Medicine 21(4): 1109-1120.
Delgado, J.A., Morejón,
L., Martínez, S., Ginebra,
M.P., Carlsson, N., Fernández,
E., Planell, J.A., Clavaguera-Mora,
M.T. & Rodríguez-Viejo, J. 1999. Zirconia-toughened
hydroxyapatite ceramic obtained by wet sintering. Journal
of Materials Science: Materials in Medicine 10(12): 715-719.
Dorozhkin,
S.V. 2010. Calcium orthophosphates as bioceramics:
State of the art. J. Funct. Biomater. 1(1): 22-107.
Ergun,
C. 2011. Enhanced phase stability in hydroxylapatite/
zirconia composites with hot isostatic pressing. Ceramics
International 37(3): 935-942.
Evis,
Z. & Doremus, R.H. 2007. Effect of Yf3 on hot-pressed hydroxyapatite and monoclinic zirconia
composites. Materials Chemistry and Physics 105(1):
76-79.
Fahami,
A., Nasiri-Tabrizi, B. & Ebrahimi-Kahrizsangi,
R. 2012. Synthesis of calcium phosphate-based
composite nanopowders by mechanochemical process and subsequent thermal treatment.
Ceramics International 38(8): 6729-6738.
Fang, Z.Z. 2010. Sintering of Advanced Materials Fundamentals and Processes.
Philadelphia: Elsevier.
Feng,
P., Niu, M., Gao,
C., Peng, S. & Shuai, C. 2014.
A novel two-step sintering for nano-hydroxyapatite
scaffolds for bone tissue engineering. Scientific Reports
4: 5599.
Hoffmann, M.J., Fünfschilling,
S. & Kahraman, D. 2013. Hot
isostatic pressing and gas-pressure sintering. Dlm.
Ceramics Science and Technology, disunting
oleh Riedel, R. & Chen, I.W. Weinheim,
Germany: Wiley-VCH Verlag GmbH &
Co. KGaA. hlm.
171-187.
Kamalanathan, P.,
Ramesh, S., Bang, L.T., Niakan, A.,
Tan, C.Y., Purbolaksono, J., Hari Chandran
& Teng, W.D. 2014. Synthesis and
sintering of hydroxyapatite derived from eggshells as a calcium
precursor. Ceramics International 40: 16349-16359.
Kang, S.J.L. 2005. Sintering, Densification, Grain Growth and Microstructure.
Oxford: Butterworth-Heinemann.
Karimzadeh,
A., Majid, R., Ayatollahi, Bushroa,
A.R. & Herliansya, M.K. 2014. Effect
of sintering temperature on mechanical and tribological
properties of hydroxyapatite measured by nanoindentation
and nanoscratch experiments. Ceramics
International 40: 9159-9164.
Khoo, W., Nor, F.M., Ardhyananta, H. &
Kurniawan, D. 2015. Preparation of natural hydroxyapatite
from bovine femur bones using calcination at various temperatures.
Procedia Manufacturing 2: 196-201.
Leong,
C.H., Muchtar, A., Tan, C.Y., Razali,
M. & Noor Faeizah Amat.
2014a. Sintering of hydroxyapatite/yttria
stabilized zirconia nanocomposites under nitrogen gas for dental
materials. Advances in Materials Science and Engineering
2014: Article ID. 367267.
Leong, C.H., Muchtar,
A., Tan, C.Y. & Razali, M. 2014b. A review:
Effect of sintering method on the decomposition of hydroxyapatite
and density of hydroxyapatite zirconia composites. Applied
Mechanics and Materials 465-466: 843-846.
Lim, K.F., Andanastuti
Muchtar, Rusnah
Mustaffa & Chou Yong Tan. 2014.
Synthesis and characterization of hydroxyapatite-zirconia composites
for dental applications. Asian Journal of Scientific Research
7(4): 609-615.
Lim, N.H., Kassim,
A. & Huang, N.M. 2010. Preparation and characterization of calcium
phosphate nanorods using reverse microemulsion and hydrothermal processing routes. Sains Malaysiana 39(2):
267-273.
Lin, K. & Chang, J. 2015. Structure and properties of hydroxyapatite for biomedical applications.
Dlm. Hydroxyapatite (Hap) for Biomedical
Applications, disunting oleh Mucalo, M. Sawston, Cambridge: Woodhead Publishing. hlm. 3-19.
Mohd
Reusmaazran Yusof,
Roslinda Shamsudin, Syafiq Baharuddin & Idris Besar. 2008. Fabrication of porous hydroxyapatite
for bone graft substitutes via gas technique. Sains Malaysiana 37(4):
395-399.
Montoya, C., Arola,
D. & Ossa, E.A. 2016. Importance of tubule
density to the fracture toughness of dentin. Archives
of Oral Biology 67: 9-14.
Rahaman,
M.N. 2003. Ceramic Processing and Sintering.
London: Taylor & Francis.
Tan,
C.Y., Singh, R., The, Y.C. & Tan,
Y.M. 2014. The effects of calcium-to-phosphorus ratio on the densification and
mechanical properties of hydroxyapatite ceramic. Int.
J. Appl. Ceram. Technol. 12(1): 223-227.
Wang, L.I., Wang, X.F., Yu, C.L. &
Zhao, Y.Q. 2015. Effect of titanium addition
on thermal stability of hydroxyapatite/ zirconia nanocomposite.
Science of Sintering 47: 107-112.
Wu,
Shih-Ching, Hsueh-Chuan Hsu, Shih-Kuang
Hsu, Ya-Chu Chang & Wen-Fu Ho.
2016. Synthesis of hydroxyapatite from eggshell powders through
ballmilling and heat treatment. Journal
of Asian Ceramic Societies 4: 85-90.
*Pengarang untuk surat-menyurat; email: cheehuan@hotmail.my